Computing Factorials of a huge number in C/C++: A tutorial

very very helpful post.

–Thanks

2 Likes

A lot of…lot of thanks to u :slight_smile:

2 Likes

Many many thanks 2 @codechef

2 Likes

Hell yeah!!! …I use python and VOILA!!!

2 Likes

what is t here?didn’t understand y while(t–) is used?pls explain…

1 Like

I have a better solution not just for finding factorial.
Whenever the question involves computation with big numbers (yeah very big!)
you can use a user defined data type BIGINT you need not do any code for it I’m posting it here(Even I found it somewhere :slight_smile: )
hope you find it useful.
here’s the code:

#include <iostream>

#include
#include
#include
#include <string.h>
#include <math.h>
using namespace std;

const int base = 1000000000;
const int base_digits = 9;

struct bigint {
vector a;
int sign;

bigint() :
    sign(1) {
}

bigint(long long v) {
    *this = v;
}

bigint(const string &s) {
    read(s);
}

void operator=(const bigint &v) {
    sign = v.sign;
    a = v.a;
}

void operator=(long long v) {
    sign = 1;
    if (v < 0)
        sign = -1, v = -v;
    for (; v > 0; v = v / base)
        a.push_back(v % base);
}

bigint operator+(const bigint &v) const {
    if (sign == v.sign) {
        bigint res = v;

        for (int i = 0, carry = 0; i < (int) max(a.size(), v.a.size()) || carry; ++i) {
            if (i == (int) res.a.size())
                res.a.push_back(0);
            res.a[i] += carry + (i < (int) a.size() ? a[i] : 0);
            carry = res.a[i] >= base;
            if (carry)
                res.a[i] -= base;
        }
        return res;
    }
    return *this - (-v);
}

bigint operator-(const bigint &v) const {
    if (sign == v.sign) {
        if (abs() >= v.abs()) {
            bigint res = *this;
            for (int i = 0, carry = 0; i < (int) v.a.size() || carry; ++i) {
                res.a[i] -= carry + (i < (int) v.a.size() ? v.a[i] : 0);
                carry = res.a[i] < 0;
                if (carry)
                    res.a[i] += base;
            }
            res.trim();
            return res;
        }
        return -(v - *this);
    }
    return *this + (-v);
}

void operator*=(int v) {
    if (v < 0)
        sign = -sign, v = -v;
    for (int i = 0, carry = 0; i < (int) a.size() || carry; ++i) {
        if (i == (int) a.size())
            a.push_back(0);
        long long cur = a[i] * (long long) v + carry;
        carry = (int) (cur / base);
        a[i] = (int) (cur % base);
        //asm("divl %%ecx" : "=a"(carry), "=d"(a[i]) : "A"(cur), "c"(base));
    }
    trim();
}

bigint operator*(int v) const {
    bigint res = *this;
    res *= v;
    return res;
}

friend pair<bigint, bigint> divmod(const bigint &a1, const bigint &b1) {
    int norm = base / (b1.a.back() + 1);
    bigint a = a1.abs() * norm;
    bigint b = b1.abs() * norm;
    bigint q, r;
    q.a.resize(a.a.size());

    for (int i = a.a.size() - 1; i >= 0; i--) {
        r *= base;
        r += a.a[i];
        int s1 = r.a.size() <= b.a.size() ? 0 : r.a[b.a.size()];
        int s2 = r.a.size() <= b.a.size() - 1 ? 0 : r.a[b.a.size() - 1];
        int d = ((long long) base * s1 + s2) / b.a.back();
        r -= b * d;
        while (r < 0)
            r += b, --d;
        q.a[i] = d;
    }

    q.sign = a1.sign * b1.sign;
    r.sign = a1.sign;
    q.trim();
    r.trim();
    return make_pair(q, r / norm);
}

bigint operator/(const bigint &v) const {
    return divmod(*this, v).first;
}

bigint operator%(const bigint &v) const {
    return divmod(*this, v).second;
}

void operator/=(int v) {
    if (v < 0)
        sign = -sign, v = -v;
    for (int i = (int) a.size() - 1, rem = 0; i >= 0; --i) {
        long long cur = a[i] + rem * (long long) base;
        a[i] = (int) (cur / v);
        rem = (int) (cur % v);
    }
    trim();
}

bigint operator/(int v) const {
    bigint res = *this;
    res /= v;
    return res;
}

int operator%(int v) const {
    if (v < 0)
        v = -v;
    int m = 0;
    for (int i = a.size() - 1; i >= 0; --i)
        m = (a[i] + m * (long long) base) % v;
    return m * sign;
}

void operator+=(const bigint &v) {
    *this = *this + v;
}
void operator-=(const bigint &v) {
    *this = *this - v;
}
void operator*=(const bigint &v) {
    *this = *this * v;
}
void operator/=(const bigint &v) {
    *this = *this / v;
}

bool operator<(const bigint &v) const {
    if (sign != v.sign)
        return sign < v.sign;
    if (a.size() != v.a.size())
        return a.size() * sign < v.a.size() * v.sign;
    for (int i = a.size() - 1; i >= 0; i--)
        if (a[i] != v.a[i])
            return a[i] * sign < v.a[i] * sign;
    return false;
}

bool operator>(const bigint &v) const {
    return v < *this;
}
bool operator<=(const bigint &v) const {
    return !(v < *this);
}
bool operator>=(const bigint &v) const {
    return !(*this < v);
}
bool operator==(const bigint &v) const {
    return !(*this < v) && !(v < *this);
}
bool operator!=(const bigint &v) const {
    return *this < v || v < *this;
}

void trim() {
    while (!a.empty() && !a.back())
        a.pop_back();
    if (a.empty())
        sign = 1;
}

bool isZero() const {
    return a.empty() || (a.size() == 1 && !a[0]);
}

bigint operator-() const {
    bigint res = *this;
    res.sign = -sign;
    return res;
}

bigint abs() const {
    bigint res = *this;
    res.sign *= res.sign;
    return res;
}

long long longValue() const {
    long long res = 0;
    for (int i = a.size() - 1; i >= 0; i--)
        res = res * base + a[i];
    return res * sign;
}

friend bigint gcd(const bigint &a, const bigint &b) {
    return b.isZero() ? a : gcd(b, a % b);
}
friend bigint lcm(const bigint &a, const bigint &b) {
    return a / gcd(a, b) * b;
}

void read(const string &s) {
    sign = 1;
    a.clear();
    int pos = 0;
    while (pos < (int) s.size() && (s[pos] == '-' || s[pos] == '+')) {
        if (s[pos] == '-')
            sign = -sign;
        ++pos;
    }
    for (int i = s.size() - 1; i >= pos; i -= base_digits) {
        int x = 0;
        for (int j = max(pos, i - base_digits + 1); j <= i; j++)
            x = x * 10 + s[j] - '0';
        a.push_back(x);
    }
    trim();
}

friend istream& operator>>(istream &stream, bigint &v) {
    string s;
    stream >> s;
    v.read(s);
    return stream;
}

friend ostream& operator<<(ostream &stream, const bigint &v) {
    if (v.sign == -1)
        stream << '-';
    stream << (v.a.empty() ? 0 : v.a.back());
    for (int i = (int) v.a.size() - 2; i >= 0; --i)
        stream << setw(base_digits) << setfill('0') << v.a[i];
    return stream;
}

static vector<int> convert_base(const vector<int> &a, int old_digits, int new_digits) {
    vector<long long> p(max(old_digits, new_digits) + 1);
    p[0] = 1;
    for (int i = 1; i < (int) p.size(); i++)
        p[i] = p[i - 1] * 10;
    vector<int> res;
    long long cur = 0;
    int cur_digits = 0;
    for (int i = 0; i < (int) a.size(); i++) {
        cur += a[i] * p[cur_digits];
        cur_digits += old_digits;
        while (cur_digits >= new_digits) {
            res.push_back(int(cur % p[new_digits]));
            cur /= p[new_digits];
            cur_digits -= new_digits;
        }
    }
    res.push_back((int) cur);
    while (!res.empty() && !res.back())
        res.pop_back();
    return res;
}

typedef vector<long long> vll;

static vll karatsubaMultiply(const vll &a, const vll &b) {
    int n = a.size();
    vll res(n + n);
    if (n <= 32) {
        for (int i = 0; i < n; i++)
            for (int j = 0; j < n; j++)
                res[i + j] += a[i] * b[j];
        return res;
    }

    int k = n >> 1;
    vll a1(a.begin(), a.begin() + k);
    vll a2(a.begin() + k, a.end());
    vll b1(b.begin(), b.begin() + k);
    vll b2(b.begin() + k, b.end());

    vll a1b1 = karatsubaMultiply(a1, b1);
    vll a2b2 = karatsubaMultiply(a2, b2);

    for (int i = 0; i < k; i++)
        a2[i] += a1[i];
    for (int i = 0; i < k; i++)
        b2[i] += b1[i];

    vll r = karatsubaMultiply(a2, b2);
    for (int i = 0; i < (int) a1b1.size(); i++)
        r[i] -= a1b1[i];
    for (int i = 0; i < (int) a2b2.size(); i++)
        r[i] -= a2b2[i];

    for (int i = 0; i < (int) r.size(); i++)
        res[i + k] += r[i];
    for (int i = 0; i < (int) a1b1.size(); i++)
        res[i] += a1b1[i];
    for (int i = 0; i < (int) a2b2.size(); i++)
        res[i + n] += a2b2[i];
    return res;
}

bigint operator*(const bigint &v) const {
    vector<int> a6 = convert_base(this->a, base_digits, 6);
    vector<int> b6 = convert_base(v.a, base_digits, 6);
    vll a(a6.begin(), a6.end());
    vll b(b6.begin(), b6.end());
    while (a.size() < b.size())
        a.push_back(0);
    while (b.size() < a.size())
        b.push_back(0);
    while (a.size() & (a.size() - 1))
        a.push_back(0), b.push_back(0);
    vll c = karatsubaMultiply(a, b);
    bigint res;
    res.sign = sign * v.sign;
    for (int i = 0, carry = 0; i < (int) c.size(); i++) {
        long long cur = c[i] + carry;
        res.a.push_back((int) (cur % 1000000));
        carry = (int) (cur / 1000000);
    }
    res.a = convert_base(res.a, 6, base_digits);
    res.trim();
    return res;
}

};

int main()
{
int t;
cin>>t;
bigint fact=1;
for(int i=1;i<=t;i++)
fact*=i;
cout<<fact<<endl;
return 0;
}

3 Likes

thanks for this very nice information

I’ve tried to get the factorials by the same method using a different approach but i cannot get factorials of numbers above 30. Can you please tell me where i did it wrong? Here is my code

#include <iostream>

using namespace std;

int main()
{
    int i,j,x,n,a[2000],m=1,fac=1,temp=0;
    cout << "Enter no. to calculate factorial"<<endl;
    cin >> n;
    a[0]=1;
    for(i=1;i<=n;i++)
    {
        for(j=0;j<m;j++)
        {
            if(j==0)
                temp=0;
            x=i*a[j]+temp;
            a[j]=x%10;
            temp=x/10;
        }
        if(temp>0)
        {
            a[m]=temp;
            m++;
        }
    }
    cout<<"Factorial of " <<n;
    cout<< " is ";
    for(i=m-1;i>=0;i--)
    {
        cout<<a[i];
    }


}

Hello all,
It is a great technique to store factorial in an array.But how to use it in calculation.Suppose we need to calculate combination of n and r(nCr) and say n is 1000 and r is 100. Then how to use these factorial stored in array.

JAVA:
import java.util.Scanner;
import java.math.BigInteger;

class Main
{
public static void main(String args[])
{
Scanner sc = new Scanner(System.in);
int T;
T=sc.nextInt();
while(T>0){
int n, c;
BigInteger inc = new BigInteger(“1”);
BigInteger fact = new BigInteger(“1”);
n = sc.nextInt();
for (c = 1; c <= n; c++) {
fact = fact.multiply(inc);
inc = inc.add(BigInteger.ONE);
}

System.out.println(fact);

T–;
}
}
}

There is one more solution . Use long double and while printing write cout.precision(200)<<answer;
#include
#include
using namespace std;

long double fact(long double num){
if(num==1)
return 1;
else{
return num* fact(num-1);
}
}
int main(int argc, char * argv[]){
int T;
cin>>T;
while(T–){
long double num,ans;
cin>>num;
cout.precision(200);
ans=fact(num);
cout<<ans;
cout<<’\n’;
}
return 0;
}

// This solution gives the same answer. gcc4.8.1

Thanks I learned this now hehe.

Thanks a lot, a very very well explained topic. This tutorial really helped…!!

So I had anyways, written my own after reading this post; difference is that I have used char array(char[]). My program can easily calculate factorial up to 15000. 15000! is calculated in 2.00 sec to 2.07 seconds(according to Ideone).

I believe it can further be optimized. I am looking for a code which lets me easily calculate (10^9)! My search is on. One thought I got is to trim the trailing zeros, after 900 or 1000. This can significantly reduce calculations. While printing the result, the number of appending zeros can be calculated from a different way. 15000! contains something 3700 trailing zeros.

Anyways, I welcome comments on my code. Here is my code:

#include <stdio.h>
char res[100000];
int main() {

int n,i,j,m;
long temp,c;

while(scanf("%d",&n)!=EOF)
{

m=1;
res[0]=‘1’;

for(i=2;i<=n;i++){

c=0;

for(j=0;j<m;j++){

temp=((res[j]-48)*i)+c;

res[j]=(temp%10)+48;

c=temp/10;

}

while(c>0)
{

res[m]=(c%10)+48;

c=c/10;

m++;

}

}

for(i=m-1;i>=0;i–)

printf("%c",res[i]);

printf("\n");
}

return 0;
}

Please do suggest how to improve this code…!!

omg, this is really helpful. Thank you.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace BigMultiplier
{
class Program
{

    static void Main(string[] args)
    {
        int[] s1 = new int[1];
        int[] s2 = new int[1];

        s1[0]=1;
        Program p = new Program();

        int[] s3 = p.doit(s1, s2);
        Console.WriteLine("Enter the Number for Which Factorial to be Found (below 1000)");
        int limit = Convert.ToInt32(Console.ReadLine());


        for (int i = 1; i <= limit; i++)
        {
            s3 = p.return_array(i);
            s1 = p.doit(s1, s3);
        }
        int sum = 0;
        for (int j = s1.Length-1; j >=0; j--)
        {
            Console.Write(s1[j]);
            sum = sum + s1[j];
        }
        Console.Write("sum = "+sum);
        Console.WriteLine();
        Console.ReadLine();          
    }

    int[] return_array(int num)
    {
        int[] num_arr = new int[1]; ;

        if (num <= 9)
        {
            num_arr = new int[1];
            num_arr[0] = num;
        }
        else if (num <= 99)
        {
            num_arr = new int[2];
            num_arr[1] = num % 10;
            num = num / 10;
            num_arr[0] = num;
        }
        else if (num <= 999)
        {
            num_arr = new int[3];
            num_arr[2] = num % 10;
            num = num / 10;
            num_arr[1] = num % 10;
            num = num / 10;
            num_arr[0] = num % 10;
        }
        else if (num <= 9999)
        {
            num_arr = new int[4];
            num_arr[3] = num % 10;
            num = num / 10;
            num_arr[2] = num % 10;
            num = num / 10;
            num_arr[1] = num % 10;
            num = num / 10;
            num_arr[0] = num % 10;
        }
        else if (num <= 99999)
        {
            num_arr = new int[5];
            num_arr[4] = num % 10;
            num = num / 10;
            num_arr[3] = num % 10;
            num = num / 10;
            num_arr[2] = num % 10;
            num = num / 10;
            num_arr[1] = num % 10;
            num = num / 10;
            num_arr[0] = num % 10;
        }
        return num_arr;
    }


    int[] doit(int[] num1_int, int[] num2_int)
    {

// String num1_string, num2_string;
// Console.WriteLine(“Enter the Number 1”);
// num1_string = Console.ReadLine();
// Console.WriteLine(“Enter the Number 2”);
// num2_string = Console.ReadLine();

// int[] num1_int = new int[num1_string.Length];
// int[] num2_int = new int[num2_string.Length];

// for (int j = 0; j < num1_string.Length; j++)
// {
// num1_int[j] = num1_string[j]-48;
// Console.Write(" " + num1_int[j]);
// }

// for(int j=0;j<num2_string.Length;j++)
// {
// num2_int[j] = num2_string[j]-48;
// Console.Write(" " + num2_int[j]);
// }

        int[,] num3_int = new int[num2_int.Length, (num1_int.Length + 1)];
        int i,k,temp=0;

        //Multiplication on Individual Digits Done and the Values are there in the Individual Cells of the Array
        for(i=0;i<num2_int.Length;i++)
        {
            for (k = 0; k < num1_int.Length; k++)
            {
                int mul = (num1_int[k] * num2_int[i])+temp;
                num3_int[i, k] = mul % 10;
                temp = mul / 10;
                if (k == (num1_int.Length - 1))
                {
                    num3_int[i, k+1] = temp;
                }

// Console.Write(" " + num3_int[i, k]);
}
// Console.Write(" " + num3_int[i, k]);
temp=0;
// Console.WriteLine();
}

// temp = 0;

// Console.ReadLine();
int[] result_int = new int[num1_int.Length + num2_int.Length];

// int[,] num3_int = new int[num2_string.Length, (num1_string.Length + 1)];

        double result=0;

        for(i=0;i<num2_int.Length;i++)
            for (k = 0; k < (num1_int.Length + 1); k++)
            {

// Console.Write(" i = " + i + " k=" + k+" “);
// Console.Write(num3_int[i, k]);
result=result+(num3_int[i,k]*Math.Pow(10,k)*Math.Pow(10,i));
// Console.WriteLine(” "+(num3_int[i,k]*Math.Pow(10,k)*Math.Pow(10,i)));
// Console.WriteLine("10^k " + Math.Pow(10,k));

            }

        int[,] num4_int= new int[num2_int.Length,num1_int.Length + num2_int.Length];
        for (i = 0; i < num2_int.Length; i++)
        {
            for (k = 0; k < (num1_int.Length + 1); k++)
            {
                //for (int l = 0; l < 0; l++)
                {
                    num4_int[i,k + i] = num3_int[i,k]; 
                }
            }               
        }

        for (i = 0; i < num2_int.Length; i++)
        {
            for (k = 0; k < (num1_int.Length + num2_int.Length); k++)
            {

// Console.Write(" " + num4_int[i, k]);
}
// Console.WriteLine();
}

        int[] re_int = new int[num1_int.Length + num2_int.Length];
        temp=0;
        for (i = 0; i < re_int.Length; i++)
        {
            re_int[i] = 0;
            for (k = 0; k < num2_int.Length; k++)
            {
                re_int[i] = num4_int[k, i] + re_int[i];
            }
            int t = re_int[i] + temp;
            re_int[i]=t%10;
            temp=t/10;
            if(i==(re_int.Length-1))
            {
                //Need to check
            }
        }

// Console.WriteLine("Final Result - Reversed Order “);
// for(i=0;i<re_int.Length;i++)
// Console.Write(” "+re_int[i]);

         //           re_int[i+k]=;

// Console.WriteLine("Final Result - Correct Order “);
// for(i=re_int.Length-1;i>=0;i–)
// Console.Write(” " + re_int[i]);

// Console.WriteLine(result);
// Console.ReadLine();
return re_int;
}
}
}


dating advice for women

ok thats a good idea

@s1h33p
What would happen if m = 2??

Thanks a lot :slight_smile:

I was always confused to do this task. And finally your post removed my confusion.

Thank you for your effective article. :slight_smile:

The efficient way to calculate factorial is by calculating k-th last element on k-th iteration. If you can output to a file all you need is O(n) space lesser multiplications. infact, we can do that without multiplications.
Checkout for full article: