This is going to be a complete video lecture series on Number theory covering concepts in details with implementation details and practice problems to make concepts clear and gain confidence.

here are the list of topics we could be covering in this seires

(advance concepts like Mobius inversion and FFT will be covered in advanced number theory series).

L00 : Course Overview

L01 : Primality test in O(sqrt(N)) Time

L01.1 : Practice Problem : Primality test(codechef)

L02 : Sieve of Eratosthenes

L02.1 : Practice Problem : finding kth prime(SPOJ)

L03 : Prime Factorization in O(sqrt(N)) time

L04 : Binary Exponentiation

L04.1 : Practice Problem : Prime interval (HackerEarth)

L04.2 : Practice Problem : Micro and Prime Prime (HackerEarth)

L05 : Prime Factorization using Sieve in O(logN) Time

L06 : Matrix Exponentiation with problem explanation(MPOW SPOJ)

L07 : Nth element of a recurrence relation in O(LogN)

L07.1 : Fibonacci Finding (HackerRank) - Matrix exponentiation practice Problem

L08 : Euclid Algorithm for GCD and Introduction to Modular Arithmetic

L08.1 : GCD Queries (Codechef)

L09 : Modular Arithmetic Part 1

L10 : Modular Arithmetic Part 2

L10.1 : A. Arpaâ€™s hard exam and Mehrdadâ€™s naive cheat(Codeforces)

L11 : Modular GCD(Codechef)

L12 : Modulo Multiplicative Inverse

L13 : Calculating Modulo Inverse

E001 : Modified GCD | Codeforces (Rated 1600)

E002 : Weakened Common Divisor | Codeforces (Rated 1600)

E001 : Identify Smith Numbers | HackerRank

L14 : calculating total divisors from prime factorization

L15 : Binomial Coefficient using Modulo inverse

L16 : Eulerâ€™s Totient Function

L17 : Eulerâ€™s Totient Function Part 2

L18 : Calculating Eulerâ€™s Totient Function in O(sqrt(N)) Time

L19 : Calculating Euler Phi Function from 1 to N in O(Nlog(logN)) Time

E001 : Eulerâ€™s Totient Function | SPOJ | Number Theory

L20 : Eulerâ€™s Totient Function & GCD Sum

E002 : Totient Extreme | SPOJ | Number Theory

L21 : ETF & GCD Sum Part 2

E003 : Count The Sum (Medium) : HackerRank

L22 : What is segmented Sieve & why you should learn it?

E003 : Prime Generator (Spoj) | Segmented Sieve Implementation

L21 : Solving Linear diophantine equation using extended Euclidean algorithm

L22 : Chinese Remainder Theorem

L23 : Pollard p-1 integer factorization method

L24 : Pollard Rho integer factorization method

L25 : Extended Euclid algorithm

Your suggestion / support is needed for this channel(CodeNCode) to grow.

Thank you for your valuable time.

CodeNCode.