×

CHONQ: time complexity of method

 0 Due to the floor function many values will remain the same. Thus values will for $a_{i}$ will only have to be recomputed after an interval. $$a_{n} = x. \left\lfloor\dfrac{a_{n}}{x}\right\rfloor+r$$ $$a_{n} = (x-1). \left\lfloor\dfrac{a_{n}}{x}\right\rfloor+\left(r+1.\left\lfloor\dfrac{a_{n}}{x}\right\rfloor\right)$$ $$a_{n} = (x-2). \left\lfloor\dfrac{a_{n}}{x}\right\rfloor+\left(r+2.\left\lfloor\dfrac{a_{n}}{x}\right\rfloor\right)$$ $$a_{n} = (x-3). \left\lfloor\dfrac{a_{n}}{x}\right\rfloor+\left(r+3.\left\lfloor\dfrac{a_{n}}{x}\right\rfloor\right)$$ $$.$$ $$.$$ $$.$$ $$a_{n} = (x-m). \left\lfloor\dfrac{a_{n}}{x}\right\rfloor+\left(r+m.\left\lfloor\dfrac{a_{n}}{x}\right\rfloor\right)$$ This will be valid until the remainder is less than the divisor, thus for the next $m$ iterations the value dosent have to be updated. $$\therefore x-m\leq r+m.\left\lfloor\dfrac{a_{n}}{x}\right\rfloor$$ $$\therefore \dfrac{x-r}{\left\lfloor\dfrac{a_{n}}{x}\right\rfloor +1}\leq m$$ I used a vector of vectors, where the $i^{th}$ index points to the list of values that are to be updated on the $i^{th}$ iteration. So once u compute m , you can append the index of the person in the $(i+m)^{th}$ position on this array. link to my solution can someone please help me with the time complexity of this method? asked 14 Mar, 20:55 1●1 accept rate: 0%
 toggle preview community wiki:
Preview

By Email:

Markdown Basics

• *italic* or _italic_
• **bold** or __bold__
• image?![alt text](/path/img.jpg "title")
• numbered list: 1. Foo 2. Bar
• to add a line break simply add two spaces to where you would like the new line to be.
• basic HTML tags are also supported
• mathemetical formulas in Latex between \$ symbol

Question tags:

×90
×20