 CHONQ: time complexity of method

Due to the floor function many values will remain the same.
Thus values will for a_{i} will only have to be recomputed after an interval.

a_{n} = x. \left\lfloor\dfrac{a_{n}}{x}\right\rfloor+r
a_{n} = (x-1). \left\lfloor\dfrac{a_{n}}{x}\right\rfloor+\left(r+1.\left\lfloor\dfrac{a_{n}}{x}\right\rfloor\right)
a_{n} = (x-2). \left\lfloor\dfrac{a_{n}}{x}\right\rfloor+\left(r+2.\left\lfloor\dfrac{a_{n}}{x}\right\rfloor\right)
a_{n} = (x-3). \left\lfloor\dfrac{a_{n}}{x}\right\rfloor+\left(r+3.\left\lfloor\dfrac{a_{n}}{x}\right\rfloor\right)
.
.
.
a_{n} = (x-m). \left\lfloor\dfrac{a_{n}}{x}\right\rfloor+\left(r+m.\left\lfloor\dfrac{a_{n}}{x}\right\rfloor\right)

This will be valid until the remainder is less than the divisor,
thus for the next m iterations the value dosent have to be updated.

herefore x-m\leq r+m.\left\lfloor\dfrac{a_{n}}{x}\right\rfloor
herefore \dfrac{x-r}{\left\lfloor\dfrac{a_{n}}{x}\right\rfloor +1}\leq m

I used a vector of vectors, where the i^{th} index points to the list of values that are to be updated on the i^{th} iteration. So once u compute m , you can append the index of the person in the (i+m)^{th} position on this array.