 Author: utkarsh_25dec
Testers: iceknight1093, mexomerf
Editorialist: iceknight1093

3300

None

# PROBLEM:

You have a binary array A. In one move, you can pick two indices 1 \leq i \lt j \lt N such that i+1 \lt j, and swap A_i with A_j and A_{i+1} with A_{j+1}.

Use at most N moves to sort A.

# EXPLANATION:

Let c_0 and c_1 be the number of zeros and ones in A.

Let’s assume c_0 \leq c_1. In particular, this means 2c_0 \leq N.
For the array to be sorted, the first c_0 positions should be 0 and the last c_1 should be 1.

Now, we iterate i from 1 to c_0; at each step, we’ll try to place a 0 at position i without affecting positions 1, 2, \ldots, i-1; if we are able to do this for every i \leq c_0, the array will be sorted.

This requires a little bit of casework.

• If A_i = 0 already, nothing needs to be done.
• Otherwise, let x \gt i be the smallest index such that A_x = 0. We’ll try to bring this 0 to position i.
• If x \gt i+1, we only need a single operation: (i, x).
• If x = i+1, we need two operations: first, perform the operation (i+1, i+3) to move this zero away, then perform the operation (i, i+3) to bring it to position i.

We perform at most 2 operations for each 0, giving us a total of \leq 2c_0 \leq N operations, as needed.
Notice that the N \geq 7 constraint is what allows our second case to work: we need i+4 \leq N, which will always be satisfied since \displaystyle i \leq c_0 \leq \left\lfloor \frac{N}{2} \right\rfloor.

Make sure to properly update the positions of the zeros when swaps are performed!

If c_0 \gt c_1, do the same thing but place 1's from the back instead.

There are other ways to solve this task, though most likely involving more casework and dealing with specific patterns.
One such example can be seen in the editorialist’s code linked below, which only places 1's from right to left using \leq 1 move for almost every position, but deals with multiple cases in the process.

# TIME COMPLEXITY:

\mathcal{O}(N) per testcase.

# CODE:

Setter's code (C++)
//Utkarsh.25dec
#include <bits/stdc++.h>
#define ll long long int
#define pb push_back
#define mp make_pair
#define mod 1000000007
#define vl vector <ll>
#define all(c) (c).begin(),(c).end()
using namespace std;
ll power(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
ll modInverse(ll a){return power(a,mod-2);}
const int N=500023;
bool vis[N];
int sumN=0;
vector <pair<int,int>> opers;
int A[N];

// Applying operation on (i,j)
void apply(int i,int j)
{
opers.pb(mp(i,j));
swap(A[i],A[j]);
swap(A[i+1],A[j+1]);
}

// Moving all zeros to left one by one
void placeZeros(int n)
{
// keep will store the position of leftmost 1
int keep=0;
for(int i=2;i<=n;i++)
{
if(A[i]==1 || A[i-1]==0)
continue;
if(A[i-1]==1)
{
while(A[keep]==0)
keep++;

if(i==n) // Move left once and then move it to required place
{
apply(n-3,n-1);
apply(keep,n-2);
continue;
}

if(keep+1<i) // Directly move it to required place
apply(keep,i);
else // Move right once and then move it to required place
{
apply(i,i+2);
apply(keep,i+2);
}
}
}
}
void solve()
{
opers.clear();
int n;
cin>>n;
int cnt0=0,cnt1=0;
for(int i=1;i<=n;i++)
{
cin>>A[i];
if(A[i]==0)
cnt0++;
else
cnt1++;
}

if(max(cnt0,cnt1)==n)
{
cout<<0<<'\n';
return;
}

// We will try to place the character with less count
if(cnt0<=cnt1)
placeZeros(n);
else
{
// Reversing and Complimenting the array
int B[n+1];
for(int i=1;i<=n;i++)
B[i]=1-A[n+1-i];
for(int i=1;i<=n;i++)
A[i]=B[i];

placeZeros(n);
for(int i=0;i<opers.size();i++)
opers[i]=mp(n-opers[i].second,n-opers[i].first);
}

cout<<opers.size()<<'\n';
for(auto it:opers)
cout<<it.first<<' '<<it.second<<'\n';
}
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL),cout.tie(NULL);
int T;
cin>>T;
while(T--)
solve();
}

Editorialist's code (Python)
for _ in range(int(input())):
n = int(input())
a = list(map(int, input().split()))
ones = [i for i in range(n) if a[i] == 1]
swaps = []
def operate(x, y): # x < y
assert 0 <= x < n-1
assert x+1 < y < n-1
a[x], a[y] = a[y], a[x]
a[x+1], a[y+1] = a[y+1], a[x+1]
swaps.append((x, y))

for i in reversed(range(n)):
if len(ones) == 0: break
if ones[-1] == i:
ones.pop()
continue
if 0 < ones[-1] < i-1:
u = ones.pop()
if a[u-1] == 1: ones.pop()
operate(u-1, i-1)
if a[i-1] == 1: ones.append(i-1)
elif len(ones) == 1:
if ones[-1] == 0: # Case 100000...01111...
if a == 0: # Case 1000...011111
operate(0, 2)
operate(1, i-1)
elif a == 0:
operate(0, 2)
operate(3, 5)
operate(2, 5)
elif a == 0: # Case 10011111...
operate(0, 2)
operate(1, 3)
else: # 101111...
operate(0, 2)
operate(0, 3)
else:
if i >= 4:
operate(i-3, i-1)
operate(i-4, i-1)
else:
operate(i, i+2)
operate(i-1, i+2)
ones.pop()
# Now ones[-1] == i-1
elif ones[-2] > 0:
ones.pop()
u = ones.pop()
if a[u-1] == 1: ones.pop()
operate(u-1, i-1)
ones.append(u-1)
if a[i-1] == 1: ones.append(i-1)
else: # a = a[i-1] = 1, and these are the only 2
if i == 2: # Case 11011111...
operate(0, 2)
elif i == 3: # Case 1010111...
operate(0, 3)
operate(1, 4)
else: # Case 100...10111...
operate(0, i-2)
operate(i-3, i-1)
if i > 4: operate(0, i-2)
break
print(len(swaps))
for x, y in swaps:
print(x+1, y+1)