- PG Admissions 2023 Announced
- | Ph.D. Admissions 2023 Announced
- | Admission Helpline - Voice call: 080 66 91 91 80
- M.Tech.
(EC) - last date 28
^{th}April 2022

- Admission Helpline - Voice call: 080 66 91 91 80
- UG Admissions - All India Category - Admission Status Announced

Arpita Mal

PhD (Mathematics), Jadavpur University, Kolkata

079-68261660

# 3104, FB-3, DA-IICT, Gandhinagar, Gujarat, India – 382007

arpita_mal@daiict.ac.in

Dr. Arpita Mal is an assistant professor at DA-IICT since December 2023. Prior to joining DA-IICT, she was an INSPIRE Faculty Fellow at IISc Bangalore. She completed her PhD from Jadavpur University in 2021. Her research interest is broadly in Functional Analysis, Operator Theory and Linear Algebra. In particular, it includes Geometry of Banach space, Birkohff-James orthogonality, Numerical radius etc.

- Monograph:
**A. Mal**, K. Paul and D. Sain, Birkhoff-James Orthogonality and Geometry of Operator Spaces, Infosys Sci. Found. Ser. Math. Sci., Springer, 2023, xx+270 pp., ISBN 978-981-99-7110-7

**A. Mal**, On joint numerical radius of operators and joint numerical index of a Banach space, Oper. Matrices, 17 (2023), no. 3, 839-856.- S. Ghosh,
**A. Mal,**K. Paul and D. Sain, On symmetric points with respect to the numerical radius norm, Banach J. Math. Anal, 17 (2023) 25 pp. **A. Mal**, An approximation problem in the space of bounded operators, Numer. Funct. Anal. Optim., 44 (2023) no. 2, 124-137.- S. Dey,
**A. Mal**and K. Paul, Geometric properties of operator spaces endowed with the numerical radius norm, Ann. Funct. Anal., 14 (2023) no. 1, Paper No 19, 14pp. **A. Mal**, Extreme points of the unit ball of ${\mathcal{L}(X)}_w^*$ and best approximation in ${\mathcal{L}(X)}_w$, Bull. Sci. Math., 179 (2022) Paper No. 103172, 14 pp.**A. Mal**and K. Paul, Distance formulae and best approximation in the space of compact operators, J. Math. Anal. Appl., 509 (2022) no. 1., Paper No. 125952, 19 pp.- K. Mandal, D. Sain,
**A. Mal**and K. Paul, Norm attainment set and symmetricity of operators on $\ell_p^2$, Adv. Oper. Theory, 7 (2022) no. 1, Paper No. 3, 19 pp. **A. Mal**, K. Paul and J. Sen, Birkhoff-James orthogonality and numerical radius inequalities of operator matrices, Monatsh. Math., 197 (2022) no. 4, 717-731.- S. Dey,
**A. Mal**and K. Paul, k-smoothness on polyhedral Banach spaces, Colloq. Math, 169 (2022) no. 1, 25-37. **A. Mal**, K. Paul and S. Dey, Characterization of extreme contractions through k-smoothness of operators, Linear Multilinear Algebra, 70 (2022) no. 20, 5301-5315.**A. Mal**, S. Dey and K. Paul, Characterization of k-smoothness of operators defined between infinite-dimensional spaces, Linear Multilinear Algebra, 70 (2022) 3477-3489.- D. Sain,
**A. Mal**, K. Mandal and K. Paul, On uniform Bishop-Phelps-Bollobas type approximations of linear operators and preservation of geometric properties, J. Math. Anal. Appl., 494 (2021) no. 1, Paper No. 124582, 22 pp. **A. Mal**and K. Paul, Birkhoff-James orthogonality to a subspace of operators defined between Banach spaces, J. Operator Theory, 85 (2021) No. 2, 463-474.- D. Sain, K. Paul and
**A. Mal**, On extreme contractions between real Banach spaces, Expo. Math., 39 (2021) No. 1, 33-47. - D. Sain,
**A. Mal**, P. Bhunia and K. Paul, On numerical radius and Crawford number attainment sets of a bounded linear operator, J. Convex Analysis, 28 (2021), No. 1, 067-080. - J. Sen,
**A. Mal**and K. Paul, Characterization of approximate Birkhoff-James orthogonality sets in a Banach space, J. Convex Analysis, 27 (2020) No. 3, 881-892. **A. Mal**and K. Paul, Characterization of k-smooth operators between Banach spaces, Linear Algebra Appl., 586 (2020) 296-307.- D. Sain,
**A. Mal**and K. Paul, Some remarks on Birkhoff-James orthogonality of linear operators, Expo. Math., 38 (2020) 138-147. - D. Sain, K. Paul,
**A. Mal**and A. Ray, A complete characterization of smoothness in the space of bounded linear operators, Linear Multilinear Algebra, 68 (2020) No. 12, 2484-2494. **A. Mal**, K. Paul, T.S.S.R.K. Rao and D. Sain, Approximate Birkhoff-James orthogonality and smoothness in the space of bounded linear operators, Monatsh. Math., 190 (2019) 549-558.**A. Mal**, D. Sain and K. Paul, On some geometric properties of operator spaces, Banach J. Math. Anal., 13 (2019) (1) 174-191.- K. Paul,
**A. Mal**and P. Wojcik, Symmetry of Birkhoff-James orthogonality of operators defined between infinite dimensional Banach spaces, Linear Algebra Appl., 563 (2019) 142-153. - D. Sain, K. Paul and
**A. Mal**, On Approximate Birkhoff-James Orthogonality and Normal Cones in a Normed Space, J. Convex Analysis, 26 (2019) 341-351. - K. Paul, D. Sain and
**A. Mal**, Approximate Birkhoff-James orthogonality in the space of bounded linear operators, Linear Algebra Appl., 537 (2018) 348-357. - D. Sain, K. Paul,
**A. Mal**and K. Mandal, Orthogonality of bounded linear operators on complex Banach spaces, Adv. Oper. Theory, 3 (2018) no 3, 699-709. - D. Sain, K. Paul and
**A. Mal**, A complete characterization of Birkhoff-James orthogonality in infinite dimensional normed space, J. Operator Theory, 80 (2018) 399-413.

Dr. Arpita Mal was a teaching assistant for Analysis and Linear Algebra course-UG I in 2022 and 2023 at IISc Bangalore. She taught Abstract Algebra course-B.Tech in 2018 and Calculus course- B.Tech in 2017 at Jadavpur University.