# EXPTREES - Editorial

Tester: Encho Mishinev

HARD.

# PREREQUISITES:

Matrix Tree Theorem, Generating Functions, Linearity of expectation

# PROBLEM:

Given a graph on n vertices. Each second, you choose a random unordered pair (a, b); If (a, b) is an edge in the graph, remove it, else add it. Given Q queries each containing a time t, find the expected number of spanning trees in the graph after time t.

# QUICK EXPLANATION:

For each k, find the number of spanning trees(say T_k) of the complete graph that contain exactly k edges from the original graph G = (V, E) . Also, find for each k, the probability (say P_k(t)) that a spanning tree with k edges from the original graph is alive at time t. Using linearity of expectation, the answer is \displaystyle \sum_{k=0}^{n-1} P_k(t) T_k . We use a generalization of Kirchoffâ€™s theorem to compute T_k and generating functions to compute P_k(t).

# EXPLANATION:

Let H be the set of all trees with |V| vertices. Call a tree T alive at time t if all edges of T are present in the graph at time t. The number of spanning trees equals the number of alive trees in H. So, using linearity of expectation, we have to find:

\displaystyle E[|T \in H : \text{T is alive at time t}|] = \sum_{T \in H} \Pr(\text{T is alive at time t}) = \displaystyle \sum_{k=0}^{n-1} P_k(t) T_k

where T_k is the number of trees sharing k edges with G, and P_k is the probability that a tree with k edges common with G is alive at time t.

So, now we have two subproblems : computing T_k and P_k(t).

## Computing T_k :

The Matrix Tree Theorem states that the number of spanning trees in a graph G is equal to any cofactor of its laplacian matrix, defined as:

L_{ij} = \begin{cases} \text{degree(i)} & i = j \\ -1 & (i, j) \text{ is an edge} \\ 0 & \text{otherwise} \end{cases}

In general, we can put labels on each edge. For each edge (i, j), lets introduce an indeterminate x_{ij}. Consider the matrix L(\bold{x}), whose entries are given by:

L(\bold{x})_{ij} = \begin{cases} \displaystyle \sum_{(i, k) \in E} x_{ik} & i = j \\ -x_{ij} & (i, j) \text{ is an edge} \\ 0 & \text{otherwise} \end{cases}

Now, any cofactor of L(\bold{x}) is a polynomial in the variables x_{ij}, where the contribution of a spanning tree is the monomial equal to the product of the indeterminates corresponding to the edges of the tree. That is, each tree T contributes \displaystyle \prod_{(i, j) \in T} x_{ij}.

The proof of this generalization is very similar to the proof of the matrix tree theorem:

Proof outline

Weâ€™ll give a proof analogous to the proof for kirchoffâ€™s theorem on wikipedia. Consider a modified incidence matrix E(\bold{x}), where, In each column corresponding to e = (u, v) with u < v , we have E(\bold{x})_{ue} = \sqrt{x_{(u, v)}}, and E(\bold{x})_{ve} = -\sqrt{x_{(u, v)}}. Clearly, L(\bold{x}) = E(\bold{x}) E(\bold{x})^T. Let F(\bold{x}) be the matrix formed on removing the first row of E(\bold{x}) .

Then, by cauchy binet formula, we have \det(L(\bold{x})_{11}) = \displaystyle \sum_{S} \det(F_S(\bold{x}))^2,

where S varies over all size n-1 subsets of edges, and F_S(\bold{x}) denotes the square matrix corresponding to the columns of F(\bold{x}) indexed by S.

We claim that \det(F_S(\bold{x}))^2 = 0 if there is a cycle formed by edges in S, and \displaystyle \prod _{(i, j) \in S} x_{ij} if S is a spanning tree.

If there is a cycle, we can find a linear combination of the columns corresponding to edges in the cycle with a sum 0.

Else, we prove using induction that the determinant is \pm \displaystyle \prod _{(i, j) \in S} \sqrt{x_{ij}}.

The base case is when we have two nodes and the determinant clearly is -\sqrt{x_{12}}

For the induction step, consider a tree T with \geq 3 vertices. Consider any leaf u \neq 1. There is only one edge (say e = (u, v)) incident to u, and in the determinant expansion, u must be mapped to e. So, we can erase the row u and the column e. The remaining matrix corresponds to a tree T' formed on removing the leaf u and edge e from T. Clearly, \det(F_T(\bold{x})) = \pm \sqrt{x_{u, v}} \times \pm \displaystyle \prod_{(i, j) \in T'} \sqrt{x_{ij}} = \pm \displaystyle \prod_{(i, j) \in T} \sqrt{x_{ij}}.

Notice that, if we replace x_{ij} by y for each edge (i, j) in G and by 1 for each edge not in G, any cofactor will be \displaystyle \sum_{k=0}^{n-1} T_k y^k

To find the cofactor, we evaluate it at n different values of y and then interpolate. This takes O(N^4).

## Computing P_k(t):

Consider a tree T. Let X be the set of edges in T \cap E, Y be T \setminus E, and \bar{T} be the complement of the set T. Let |X| = k. We know |\bar{T}| = (n - 1)(n - 2) / 2 (say r).

For T to be alive, each edge in X must have been toggled an even number of times and each edge in Y must have been toggled an odd number of times.

Let 2x_1, 2x_2, \ldots 2x_k be the ordered number of times edges in X are toggled, 2y_1+1, 2y_2 + 1, \ldots 2y_{n-1-k} + 1 be the ordered number of times edges in Y are toggled, and z_1, z_2, \ldots z_r be the ordered number of times edges in \bar{T} are toggled. Then, we have:

\displaystyle \sum_{i=1}^{k} 2 x_i + \sum_{i=1}^{n - 1 - k} (2 y_i + 1) + \sum_{i=1}^{r} z_i = t

And for each such triple of tuples, we have to add \frac{t!}{\prod (2x_i)! \prod (2y_i+1)! \prod z_i!}.

So, the total number of ways to toggle edges is given by t! times the coefficient of x^t in

Q_k(x) = \Big( \dfrac{e^x + e^{-x}}{2} \Big)^k \Big( \dfrac{e^x - e^{-x}}{2} \Big)^{n-1-k} e^{rx}

Evaluate Q_k(x) as a polynomial in e^x. Say Q_k(x) = \sum q_{k,i} e^{ix}. Then, we have:

P_k(t) \Big(\frac{n(n-1)}{2}\Big)^t = \displaystyle \sum q_{k,i} i^t

Notice that q_{k, i} is non zero only for i of the form 2j + r - n + 1, where j varies from 0 to n - 1. Let H_i = \sum_{k}T_k q_{k, i} . Clearly, there are only n non zero H_i. The answer E(t) at time t is given by:

E(t) \Big(\frac{n(n-1)}{2}\Big)^t = \displaystyle \sum T_k P_k(t) = \displaystyle \sum_{k, i} T_k q_{k,i} i^t = \displaystyle \sum_{i} H_i i^t

The precomputation of q_{k,i} for a single k takes O(N^2), so for all k, this can be done in O(N^3). Therefore, H_i can also be computed in O(N^3).

Answering a query at time t takes O(N \log{t}).

The overall complexity is O(N^4 + Q N \log{t_{\text{max}}}).

# SOLUTIONS:

Setter's Solution
#include <bits/stdc++.h>
using namespace std;

#define ll long long
#define sd(x) scanf("%d", &(x))

const int N = 1e5 + 10, mod = 1e9 + 7;
int fact[N], invfact[N];
inline int add(int x, int y){ x += y; if(x >= mod) x -= mod; return x;}
inline int sub(int x, int y){ x -= y; if(x < 0) x += mod; return x;}
inline int mul(int x, int y){ return (((ll) x) * y) % mod;}
inline int powr(int a, ll b){
int x = 1 % mod;
while(b){
if(b & 1) x = mul(x, a);
a = mul(a, a);
b >>= 1;
}
return x;
}
inline int inv(int a){ return powr(a, mod - 2);}
void pre(){
fact[0] = invfact[0] = 1;
for(int i = 1;i < N; i++) fact[i] = mul(i, fact[i - 1]);
invfact[N - 1] = inv(fact[N - 1]);
for(int i = N - 2; i >= 1; i--) invfact[i] = mul(invfact[i + 1], i + 1);
assert(invfact[1] == 1);
}

inline int C(int n, int k){
if(n < k || k < 0) return 0;
return mul(fact[n], mul(invfact[k], invfact[n - k]));
}

/*
Find a degree n - 1 polynomial passing through n points (x[i], y[i]) in O(n^2)
*/

vector<int> interpolate(const vector<int> & x, const vector<int> & y){
int n = x.size();
vector<int> ret(n);
vector<int> numerator(n + 1);
vector<int> val(n + 1);
numerator[0] = 1;
for(int i = 0; i < n; i++){
for(int j = i + 1; j >= 1; j--)
numerator[j] = sub(numerator[j - 1], mul(x[i], numerator[j]));
numerator[0] = mul(numerator[0], mod - x[i]);
}
for(int i = 0; i < n; i++){
int den = 1;
for(int j = 0; j < n; j++) if(j != i) den = mul(den, sub(x[i], x[j]));
int coeff = mul(inv(den), y[i]);
copy(numerator.begin(), numerator.end(), val.begin());
int a = x[i];
for(int j = n - 1; j >= 0; j--){
int h = val[j + 1];
}
assert(val[0] == 0);
}
return ret;
}

int determinant(vector<vector<int>> & V){
int ret = 1;
int n = V.size();
vector<int> done(n, 0);
for(int j = 0; j < n; j++){
bool found = false;
for(int i = 0; i < n; i++) if(V[i][j] && !done[i]){
int coeff = inv(V[i][j]);
for(int k = 0; k < n; k++) if(!done[k] && i != k && V[k][j]){
// Rk -> Rk - V[k][j] / V[i][j] * Ri
int factor = mul(V[k][j], coeff);
for(int l = 0; l < n; l++){
V[k][l] = sub(V[k][l], mul(factor, V[i][l]));
}
}
found = true;
done[i] = 1;
ret = mul(ret, V[i][j]);
break;
}
if(!found) return 0;
}
return ret;
}

struct graph{
vector<vector<int>> col;
vector<int> deg;
int n;
graph(int n) : n(n), col(n, vector<int>(n, 0)), deg(n){}
col[u][v] = col[v][u] = 1;
deg[u]++; deg[v]++;
}
vector<int> getSpanningTrees(){
// how many spanning trees of the complete graph with exactly i edges from this graph and the rest from its complement?
vector<int> x(n), y(n);
for(int i = 0; i < n; i++){
vector<vector<int>> arr(n - 1, vector<int>(n - 1, 0));
for(int j = 1; j < n; j++) for(int k = 1; k < n; k++){
if(j == k) arr[j - 1][k - 1] = deg[j] * i + n - 1 - deg[j];
else arr[j- 1][k - 1] = sub(0, col[j][k] * i + 1 - col[j][k]);
}
x[i] = i;
y[i] = determinant(arr);
}

return interpolate(x, y);
}
};

vector<int> naive_mul(const vector<int> & X, const vector<int> & Y){
vector<int> Z(X.size() + Y.size() - 1);
for(int i = 0; i < X.size(); i++)
for(int j = 0; j < Y.size(); j++)
Z[i + j] = add(Z[i + j], mul(X[i], Y[j]));
return Z;
}

const int L = 32005;
int powers[4][305][L + 1];

int main(){
pre();
int n = 100, m, q;
sd(n); sd(m); sd(q);
graph g(n);
for(int i = 0; i < m; i++){
int u, v; sd(u); sd(v);
u--; v--;
}

vector<int> T = g.getSpanningTrees();

int other = ((n - 2) * (n - 1)) / 2;

int coeff = powr((mod + 1) >> 1, n - 1);

vector<int> H(n);
for(int k = 0; k < n; k++){
/*
Given a spanning tree T with k original edges, what is the probability that it is alive?

Original edges in T have to be flipped an even number of times, 2*x_1, 2*x_2, ..., 2*x_k
Non-original edges in T have to be flipped an odd number of times, 2*y_1+1, 2*y_2+1, .., 2*y_{n-1-k}+1
Edges not in T can be flipped any number of times -> z_1, z_2, ..., z_other

Total number of ways -> t! / prod(2*x_i!) / prod((2 * y_i + 1)!) / prod(z_i!)
= t! * [x^t] ((e^x + e^-x) / 2)^k * ((e^x - e^-x) / 2) ^ (n - 1 - k) * e^(other * x)

Let y = e^x

(y^2 + 1) ^ k * (y^2 - 1) ^ (n - 1 - k) * y^(other - n + 1)
*/

vector<int> A(k + 1), B(n - k);
for(int i = 0; i <= k; i++) A[i] = C(k, i);
for(int i = 0; i <= n - 1 - k; i++){
B[i] = C(n - 1 - k, i);
if((n - 1 - k - i) & 1) B[i] = sub(0, B[i]);
}

vector<int> C = naive_mul(A, B);
for(int i = 0; i < n; i++) H[i] = add(H[i], mul(T[k], C[i]));
}

for(int i = 0; i < n; i++){
int v = 2 * i + other - n + 1;
if(v < 0) v = sub(mod, -v);
powers[0][i][0] = powers[1][i][0] = powers[2][i][0] = powers[3][i][0] = 1;
for(int j = 1; j <= L; j++){
powers[0][i][j] = mul(v, powers[0][i][j - 1]);
}
v = powers[0][i][L];
for(int j = 1; j <= L; j++){
powers[1][i][j] = mul(v, powers[1][i][j - 1]);
}
v = powers[1][i][L];
for(int j = 1; j <= L; j++){
powers[2][i][j] = mul(v, powers[2][i][j - 1]);
}
v = powers[2][i][L];
for(int j = 1; j <= L; j++){
powers[3][i][j] = mul(v, powers[3][i][j - 1]);
}
}

function<int(int, ll)> getPower = [&](int i, ll t){
int ret = 1;
for(int j = 0; j < 4; j++){
ll dv = t / L;
int md = t - L * dv;
ret = mul(ret, powers[j][i][md]);
t = dv;
}
assert(t == 0);
return ret;
};

// O(n) per query
function<int(ll)> query = [&](ll t){
int ret = 0;
for(int i = 0; i < n; i++){
// t! * [t]exp((2 * i + other - n + 1)x)
ret = add(ret, mul(H[i], getPower(i, t)));
}
int total = (n * (n - 1)) / 2;
return mul(coeff, mul(inv(powr(total, t)), ret));
};

while(q--){
ll t;
scanf("%lld", &t);
printf("%d\n", query(t));
}
}

4 Likes

I have a question with regards to an article I found, stating that the Kirchhoffâ€™s theorem can be generalised for random graphs (with a given matrix of edge probabilities). Basically the article gives a formula, due to Cohen,

for the expected number of spanning trees of such a random graph.

I tried that with the given test cases of the problem, and for T = 1 the real expected number was 1, whereas the formula from the article gave 8/9.

So obviously something is wrong with that approach. Perhaps the given situation in the problem cannot be modelled via the notion of random graph. Intuitively, this could be related with the fact that if we represent the graph at time T as a random one, we lose the information that at T = 0 it was not random (aka it was random with probabilities 0 and 1 for its edges).

Does the author of the problem know any relations with the result of Cohen?

1 Like

I think the reason is that the probabilities are not independent in the problem, where as the paper assumes them to be independent. (Not sure though)

3 Likes

Is there a typo in the section â€ścomputing P_k(t)â€ť?
if T is the spanning tree edges and E denotes the edges initially in the graph.
I think Y should be â€śT \ Xâ€ť and \tilde{E} should be \tilde{T}.

Thanks, edited.