# PROBLEM LINK: Return of Karunee

Fractal Code Fiesta

Medium

# PREREQUISITES:

Maths, Combinatorics, Prefix sum

# PROBLEM:

Given an array of digits from 0 - 9. You have to count total number of evil subarrays of the given array. A subarray is evil if sum of all elements in that subarray is equal to the size of the subarray.

# QUICK EXPLANATION:

For subtask 1 we can easily do brute force using two nested loops and overall time complexity would be O(T*M^2).
For subtask 2, Store the frequency of A_i - i for ( 0 \leq i < M) . Each distinct key will contribute \binom{n}{2} = \frac{n*(n-1)}{2} to the total count where n is the frequency of the key.

# EXPLANATION:

First of all we precalculate a prefix sum array P, where P_i = \displaystyle\sum_{j = 0}^{i-1} A_i . It means P_x is sum of first x elements of array A.
Letâ€™s assume [l,r] is an evil subarray, then
P_r - P_{l-1} = r - l + 1
\Rightarrow P_r - P_{l-1} = r - (l - 1)
\Rightarrow P_r - r = P_{l-1} - (l-1)

From here we can say that if there are K such i whose P_i - i value is same then selecting any two i from it, always results in an evil subarray. So we just need to store the frequency of all the distinct values of P_i - i ( can be stored using a hash map ) and for each frequency x we have to add \frac{x*(x-1)}{2} to the answer.

Overall time - complexity of this approach is O(T*M).

# SOLUTIONS:

Editorialist's Solution
#include <bits/stdc++.h>
using namespace std;
#define ll long long int

void solve()
{
ll t  ;
cin >> t ;
while (t--)
{
ll n ;
cin >> n  ;
string  s  ;
cin >> s  ;

ll ans  =  0 ;

for (ll i = 0 ; i < n ; i++)
{
ll sum =   0  ;
for (ll j = i ; j < n ; j++)
{
sum  += s[j] - '0' ;
if (sum == (j - i + 1 ))
ans ++  ;
}
}

cout << ans << "\n"  ;
}
}

int main()
{

solve();
return 0;
}


Editorialist's Solution
#include <bits/stdc++.h>
using namespace std;
#define ll long long int

void solve()
{
ll t  ;
cin >> t  ;
while (t--)
{
ll n  ;
cin >> n  ;
string  s ;
cin >> s  ;
ll p[n + 1 ]  ;
unordered_map <ll , ll> mp ;
ll ans =  0 , sum =  0   ;

// Calculating Prefix sum array P
p[0] =  0  ;
for (ll i = 0 ; i < n ; i++)
{
p[i + 1] = p[i] + (s[i] - '0') ;
}

// Storing frequency of distict value of Pi - i
for (ll i = 0 ; i <= n ; i++)
{
mp[p[i] - i]++  ;
}

// Adding (x*(x-1))/2 for each frequency x
for (auto &i : mp)
{
ans += ((i.second) * (i.second -  1 )) / 2 ;
}

cout << ans << "\n" ;
}
}

int main()
{

solve();
return 0;
}