FILL01 - Editoriall

PROBLEM LINK:

Practice
Contest: Division 1
Contest: Division 2
Contest: Division 3

Authors: Daanish Mahajan
Testers: Abhinav Sharma and Lavish Gupta
Editorialist: Nishank Suresh

DIFFICULTY:

Cakewalk

PREREQUISITES:

None

PROBLEM:

Chef has a work plan for the next N hours, and for each hour he knows if he must work or can take a break. He can take a nap if there are at least K consecutive hours of break time. What is the maximum number of naps he can take?

EXPLANATION:

Suppose there are x hours of consecutive break time. Chef needs at least K hours to take a nap, so in x hours, he can take at most \lfloor \frac{x}{K} \rfloor naps, where \lfloor a \rfloor denotes the floor of a, i.e, the largest integer less than or equal to a.

So, the maximum number of naps Chef can take can be computed as follows:

  • Let the (maximal) segments of break time in Chef’s schedule have lengths x_1, x_2, \ldots, x_m (a segment is said to be maximal if it is not contained in another segment of break time which has strictly larger length).
  • The maximum number of naps is then \lfloor \frac{x_1}{K} \rfloor + \lfloor \frac{x_2}{K} \rfloor + \ldots + \lfloor \frac{x_m}{K} \rfloor

For example, if Chef’s schedule is '0010110001110000' and K = 2, the maximal segments of free time have lengths 2, 1, 3, 4 from left to right. The maximum number of naps is then \lfloor \frac{2}{2} \rfloor + \lfloor \frac{1}{2} \rfloor + \lfloor \frac{3}{2} \rfloor + \lfloor \frac{4}{2} \rfloor = 1 + 0 + 1 + 2 = 4.

In most languages, computing \lfloor \frac{x}{K} \rfloor can be done by integer division, that is, just x / K. Note that python users need to use x // K instead.

Finding the maximal segments of break time can be done in \mathcal{O}(|S|) by iterating over the string and keeping a variable denoting the length of the current segment, as in the following pseudocode:

cur = 0
for i from 1 to N
    if S[i] = '0'
        cur += 1
    else
        // cur is now the length of a maximal segment, do whatever you want with it
        // ...
        
        // reset the length to 0
        cur = 0
end
// at the end of the loop, cur holds the length of the maximal segment of break time which is a suffix of S

TIME COMPLEXITY:

\mathcal{O}(N) per test case.

SOLUTIONS:

Tester's Solution (C++)
#include <bits/stdc++.h>
using namespace std;
 
 
/*
------------------------Input Checker----------------------------------
*/
 
long long readInt(long long l,long long r,char endd){
    long long x=0;
    int cnt=0;
    int fi=-1;
    bool is_neg=false;
    while(true){
        char g=getchar();
        if(g=='-'){
            assert(fi==-1);
            is_neg=true;
            continue;
        }
        if('0'<=g && g<='9'){
            x*=10;
            x+=g-'0';
            if(cnt==0){
                fi=g-'0';
            }
            cnt++;
            assert(fi!=0 || cnt==1);
            assert(fi!=0 || is_neg==false);
 
            assert(!(cnt>19 || ( cnt==19 && fi>1) ));
        } else if(g==endd){
            if(is_neg){
                x= -x;
            }
 
            if(!(l <= x && x <= r))
            {
                cerr << l << ' ' << r << ' ' << x << '\n';
                assert(1 == 0);
            }
 
            return x;
        } else {
            assert(false);
        }
    }
}
string readString(int l,int r,char endd){
    string ret="";
    int cnt=0;
    while(true){
        char g=getchar();
        assert(g!=-1);
        if(g==endd){
            break;
        }
        cnt++;
        ret+=g;
    }
    assert(l<=cnt && cnt<=r);
    return ret;
}
long long readIntSp(long long l,long long r){
    return readInt(l,r,' ');
}
long long readIntLn(long long l,long long r){
    return readInt(l,r,'\n');
}
string readStringLn(int l,int r){
    return readString(l,r,'\n');
}
string readStringSp(int l,int r){
    return readString(l,r,' ');
}
 
 
/*
------------------------Main code starts here----------------------------------
*/
 
const int MAX_T = 1e5;
const int MAX_N = 1e5;
const int MAX_SUM_LEN = 1e5;
 
#define fast ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0)
#define ff first
#define ss second
#define mp make_pair
#define ll long long
 
int sum_len = 0;
int max_n = 0;
int yess = 0;
int nos = 0;
int total_ops = 0;

const ll MX=200000;
ll fac[MX], ifac[MX];

const ll mod = 998244353;

ll po(ll x, ll n ){ 
    ll ans=1;
     while(n>0){
        if(n&1) ans=(ans*x)%mod;
        x=(x*x)%mod;
        n/=2;
     }
     return ans;
}

void solve()
{   

    ll n,x;
    n = readIntSp(1,MAX_N);
    x = readIntLn(1,n);

    string s;
    s = readStringLn(1,MAX_N);

    int cur = 0, ans = 0;
    for(auto h:s){
    	assert(h=='0' || h=='1');
      if(h=='0') cur++;
      else cur = 0;

      if(cur == x){
        ans++;
        cur = 0;
      }
    }

    cout<<ans<<'\n';

}
 
signed main()
{

    #ifndef ONLINE_JUDGE
    freopen("input.txt", "r" , stdin);
    freopen("output.txt", "w" , stdout);
    #endif
    fast;
    
    int t = 1;
    
    t = readIntLn(1,MAX_T);
        
    for(int i=1;i<=t;i++)
    {    
       solve();
    }
    
    assert(getchar() == -1);
 
    cerr<<"SUCCESS\n";
    cerr<<"Tests : " << t << '\n';
    cerr<<"Sum of lengths : " << sum_len << '\n';
    // cerr<<"Maximum length : " << max_n << '\n';
    // cerr<<"Total operations : " << total_ops << '\n';
    //cerr<<"Answered yes : " << yess << '\n';
    //cerr<<"Answered no : " << nos << '\n';
}
Editorialist's Solution (Python)
for _ in range(int(input())):
    n, k = map(int, input().split())
    s = input() + '1'
    cur, ans = 0, 0
    for c in s:
        if c == '1':
            ans += cur//k
            cur = 0
        else:
            cur += 1
    print(ans)

Or, you could simply count the number of runs of ‘0’*K in the string. Python makes this very easy:

from sys import stdin
for _ in range(int(stdin.readline())):
	n,k = map(int, stdin.readline().split())
	print (stdin.readline().count('0'*k))