This is going to be a complete video lecture series on Number theory covering concepts in details with implementation details and practice problems to make concepts clear and gain confidence.
here are the list of topics we could be covering in this seires
(advance concepts like Mobius inversion and FFT will be covered in advanced number theory series).
L00 : Course Overview
L01 : Primality test in O(sqrt(N)) Time
L01.1 : Practice Problem : Primality test(codechef)
L02 : Sieve of Eratosthenes
L02.1 : Practice Problem : finding kth prime(SPOJ)
L03 : Prime Factorization in O(sqrt(N)) time
L04 : Binary Exponentiation
L04.1 : Practice Problem : Prime interval (HackerEarth)
L04.2 : Practice Problem : Micro and Prime Prime (HackerEarth)
L05 : Prime Factorization using Sieve in O(logN) Time
L06 : Matrix Exponentiation with problem explanation(MPOW SPOJ)
L07 : Nth element of a recurrence relation in O(LogN)
L07.1 : Fibonacci Finding (HackerRank) - Matrix exponentiation practice Problem
L08 : Euclid Algorithm for GCD and Introduction to Modular Arithmetic
L08.1 : GCD Queries (Codechef)
L09 : Modular Arithmetic Part 1
L10 : Modular Arithmetic Part 2
L10.1 : A. Arpa’s hard exam and Mehrdad’s naive cheat(Codeforces)
L11 : Modular GCD(Codechef)
L12 : Modulo Multiplicative Inverse
L13 : Calculating Modulo Inverse
E001 : Modified GCD | Codeforces (Rated 1600)
E002 : Weakened Common Divisor | Codeforces (Rated 1600)
E001 : Identify Smith Numbers | HackerRank
L14 : calculating total divisors from prime factorization
L15 : Binomial Coefficient using Modulo inverse
L16 : Euler’s Totient Function
L17 : Euler’s Totient Function Part 2
L18 : Calculating Euler’s Totient Function in O(sqrt(N)) Time
L19 : Calculating Euler Phi Function from 1 to N in O(Nlog(logN)) Time
E001 : Euler’s Totient Function | SPOJ | Number Theory
L20 : Euler’s Totient Function & GCD Sum
E002 : Totient Extreme | SPOJ | Number Theory
L21 : ETF & GCD Sum Part 2
E003 : Count The Sum (Medium) : HackerRank
L22 : What is segmented Sieve & why you should learn it?
E003 : Prime Generator (Spoj) | Segmented Sieve Implementation
L23 : Finding Number of common divisors in O((LogN)^2) Time
E001 : Queries about Numbers (Medium) | Codechef
E004 : LCM Sum | Spoj | Number Theory
L21 : Solving Linear diophantine equation using extended Euclidean algorithm
L22 : Chinese Remainder Theorem
L23 : Pollard p-1 integer factorization method
L24 : Pollard Rho integer factorization method
L25 : Extended Euclid algorithm
Your suggestion / support is needed for this channel(CodeNCode) to grow.
Thank you for your valuable time.
CodeNCode.