 # PYRAMIDMOVES - Editorial

Setter: Jeevan Jyot Singh
Tester: Abhinav Sharma
Editorialist: Taranpreet Singh

Easy

# PREREQUISITES

Pascal’s Triangle

# PROBLEM

You are given a pyramid of the following form with an infinite number of rows:

1
2\ 3
4\ 5\ 6
7\ 8\ 9\ 10
...........

From a cell, you can move to either the bottom-left cell or the bottom-right cell directly in contact with the current one (For example, you can make the following moves: 1 \rightarrow 2, 1 \rightarrow 3, 6 \rightarrow 9, 6 \rightarrow 10, while you cannot make moves 2\to 6 or 2\rightarrow 7).

You are given a starting cell s and an ending cell e. Starting at cell s, find the number of ways to reach cell e. This number can be large, so print the answer modulo 10^9 + 7.

Two ways are said to be different if there exists at least one cell which was visited in one of the ways but not the other one.

# QUICK EXPLANATION

• After left aligning the triangle, the first move translates to move moving down, and the second move corresponds to moving down-right cell. We need to count the number of ways to reach from cell (r_1, c_1) to (r_2, c_2).
• There would be r_2 - r_1 moves, and the number of ways would be \displaystyle ^{r_2-r_1}C_{c_2-c_1}

# EXPLANATION

First of all, the positions in this triangle are hard to represent. Let’s left align it.

1
2 3
4 5 6
7 8 9 10 ...


Now, the effect of this translation is

• The move to the bottom-left position became moving immediately towards the bottom. For example 5 to 8.
• The move to the bottom-right position became moving to cell one step down and once step right. For example, from 5 to 9.

Hence, after this translation, each move moves you one step to the bottom, and we can choose whether to move one step to the right or not, by choosing between the first and second options.

In order to solve this, we first need to find the position in terms of rows and columns from numbering.

### Find the row and column of the specific numbered position

If the number x is written on position (r, c), row r and column c, then we can see that x = (r-1)*r/2 + c. The numbers used up in first r-1 rows are (r-1)*r/2 and c numbers in current row.

We can find the largest r such that r*(r-1)/2 \lt x by linear or binary search. Additionally, we can prove that for x \leq 10^9, the row never exceeds 10^5.

### Given positions, computing the number of ways

Assuming we have to reach position (r_2, c_2) from (r_1, c_1), we can see that each move moves us one step down, and we need to move exactly r_2-r_1 steps down, Hence the total number of moves is r_2 - r_1. In each of these moves, we can either stay in the same column or move to the next column. We have to move right c_2-c_1 times out of r_2 - r_1 times.

The problem is to choose c_2 - c_1 positions out of r_2 - r_1 positions, which can be done in ^{r_2-r_1} C _ {c_2 - c_1} ways.

The problem becomes to computing ^NC_R \bmod P. The easiest way would be to precompute factorials and their modular inverses and multiply them. Some detailed discussion on computing this can be found here.

# TIME COMPLEXITY

The time complexity is O(MX + T) per test case.

# SOLUTIONS

Setter's Solution
#ifdef WTSH
#include "wtsh.h"
#else
#include <bits/stdc++.h>
using namespace std;
#define dbg(Z...)
#endif

#define IOS ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0)
#define int long long
#define endl "\n"
#define sz(w) (int)(w.size())
using pii = pair<int, int>;

const int N = 1e5 + 5, mod = 1e9 + 7;

int fac[N], invfac[N];

int power(int a, int b, int m)
{
int res = 1;
a %= m;
while (b > 0)
{
if (b & 1)
res = res * a % m;
a = a * a % m;
b >>= 1;
}
return res;
}

int modinv(int k)
{
return power(k, mod-2, mod);
}

void precompute()
{
fac = fac = 1;
for(int i = 2; i < N; i++)
{
fac[i] = fac[i-1] * i;
fac[i] %= mod;
}
invfac[N-1] = modinv(fac[N-1]);
for(int i = N-2; i >= 0; i--)
{
invfac[i] = invfac[i+1] * (i+1);
invfac[i] %= mod;
}
}

int nCr(int n, int r)
{
if(n < 0 or r < 0 or n < r)
return 0;
return (fac[n] * invfac[r] % mod) * invfac[n-r] % mod;
}

pii find_coord(int x)
{
int lo = 0, hi = 1e5;
while(lo <= hi)
{
int mid = (lo + hi) / 2;
int done = mid * (mid + 1) / 2;
if(done < x)
lo = mid + 1;
else
hi = mid - 1;
}
swap(lo, hi);
int row = hi;
int col = x - lo * (lo + 1) / 2;
return pii{row, col};
}

void solve()
{
int s, e; cin >> s >> e;
pii S = find_coord(s);
pii E = find_coord(e);
cout << nCr(E.first - S.first, E.second - S.second) << endl;
}

int32_t main()
{
IOS;
precompute();
int T; cin >> T;
while(T--)
{
solve();
}
return 0;
}

Tester's Solution
#include <bits/stdc++.h>
using namespace std;

/*
------------------------Input Checker----------------------------------
*/

long long readInt(long long l,long long r,char endd){
long long x=0;
int cnt=0;
int fi=-1;
bool is_neg=false;
while(true){
char g=getchar();
if(g=='-'){
assert(fi==-1);
is_neg=true;
continue;
}
if('0'<=g && g<='9'){
x*=10;
x+=g-'0';
if(cnt==0){
fi=g-'0';
}
cnt++;
assert(fi!=0 || cnt==1);
assert(fi!=0 || is_neg==false);

assert(!(cnt>19 || ( cnt==19 && fi>1) ));
} else if(g==endd){
if(is_neg){
x= -x;
}

if(!(l <= x && x <= r))
{
cerr << l << ' ' << r << ' ' << x << '\n';
assert(1 == 0);
}

return x;
} else {
assert(false);
}
}
}
string ret="";
int cnt=0;
while(true){
char g=getchar();
assert(g!=-1);
if(g==endd){
break;
}
cnt++;
ret+=g;
}
assert(l<=cnt && cnt<=r);
return ret;
}
long long readIntSp(long long l,long long r){
}
long long readIntLn(long long l,long long r){
}
}
}

/*
------------------------Main code starts here----------------------------------
*/

const int MAX_T = 1000;
const int MAX_N = 1e6+5;
const int MAX_SUM_LEN = 1e5;

#define fast ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0)
#define ff first
#define ss second
#define mp make_pair
#define ll long long

int sum_len = 0;
int max_n = 0;
int yess = 0;
int nos = 0;
int total_ops = 0;

const ll MX=200000;
ll fac[MX], ifac[MX];

const ll mod = 1000000007;

ll po(ll x, ll n ){
ll ans=1;
while(n>0){
if(n&1) ans=(ans*x)%mod;
x=(x*x)%mod;
n/=2;
}
return ans;
}

void pre(){
fac=1;
for(int i=1; i<MX; i++) fac[i]= (i*fac[i-1])%mod;
for(int i=0; i<MX; i++) ifac[i]= po(fac[i], mod-2);
}

ll ncr(ll n, ll r){
if(r>n || r<0 || n<0) return 0;
return (fac[n]*((ifac[r]*ifac[n-r])%mod))%mod;
}

pair<ll,ll> find_pos(ll z){
ll l=0, r=100000;

while(l<r){
ll m = (l+r+1)>>1;
if((m*m+m)/2 >= z) r = m-1;
else l = m;
}

pair<ll,ll> ret;
ret.first = l+1;

z -= (l*l+l)/2;
z -= (l+2)/2;

if(l&1) z = 2*z-1;
else z = z*2;

ret.second = z;
return ret;
}

void solve()
{
ll s,e;

pair<ll,ll> p1, p2;
p1 = find_pos(s);
p2 = find_pos(e);

ll dis = abs(p1.second-p2.second);
ll steps = p2.first-p1.first;

if(dis>steps || (dis&1)!=(steps&1)){
cout<<0<<"\n";
return;
}

ll a = dis+(steps-dis)/2;
ll b = steps-a;

cout<<ncr(a+b,a)<<"\n";
return;
}

signed main()
{

#ifndef ONLINE_JUDGE
freopen("input.txt", "r" , stdin);
freopen("output.txt", "w" , stdout);
#endif
fast;

int t = 1;

pre();

for(int i=1;i<=t;i++)
{
solve();
}

assert(getchar() == -1);

cerr<<"SUCCESS\n";
cerr<<"Tests : " << t << '\n';
//cerr<<"Sum of lengths : " << sum_len << '\n';
// cerr<<"Maximum length : " << max_n << '\n';
// cerr<<"Total operations : " << total_ops << '\n';
//cerr<<"Answered yes : " << yess << '\n';
//cerr<<"Answered no : " << nos << '\n';
}

Editorialist's Solution
import java.util.*;
import java.io.*;
class PYRAMIDMOVES{
//SOLUTION BEGIN
int MOD = (int)1e9+7;
long[][] fif = fif(100000);
void pre() throws Exception{}
void solve(int TC) throws Exception{
int s = ni(), e = ni();
int[] p1 = pos(s), p2 = pos(e);
int N = p2-p1, R = p2-p1;
if(N < R || R < 0)pn(0);
else pn(C(N, R));
}
int[] pos(int num){
int r = 0;
while(((r+2)*(r+1))/2 < num)r++;
return new int[]{r+1, num-(r*(r+1))/2};
}
long[][] fif(int mx){
mx++;
long[] F = new long[mx], IF = new long[mx];
F = 1;
for(int i = 1; i< mx; i++)F[i] = (F[i-1]*i)%MOD;
//GFG
long M = MOD;
long y = 0, x = 1;
long a = F[mx-1];
while(a> 1){
long q = a/M;
long t = M;
M = a%M;
a = t;
t = y;
y = x-q*y;
x = t;
}
if(x<0)x+=MOD;
IF[mx-1] = x;
for(int i = mx-2; i>= 0; i--)IF[i] = (IF[i+1]*(i+1))%MOD;
return new long[][]{F, IF};
}
long C(int n, int r){
if(n<r || r<0)return 0;
return (fif[n]*((fif[r]*fif[n-r])%MOD))%MOD;
}
//SOLUTION END
void hold(boolean b)throws Exception{if(!b)throw new Exception("Hold right there, Sparky!");}
static boolean multipleTC = true;
void run() throws Exception{
out = new PrintWriter(System.out);
//Solution Credits: Taranpreet Singh
int T = (multipleTC)?ni():1;
pre();for(int t = 1; t<= T; t++)solve(t);
out.flush();
out.close();
}
public static void main(String[] args) throws Exception{
new PYRAMIDMOVES().run();
}
int bit(long n){return (n==0)?0:(1+bit(n&(n-1)));}
void p(Object o){out.print(o);}
void pn(Object o){out.println(o);}
void pni(Object o){out.println(o);out.flush();}
String n()throws Exception{return in.next();}
String nln()throws Exception{return in.nextLine();}
int ni()throws Exception{return Integer.parseInt(in.next());}
long nl()throws Exception{return Long.parseLong(in.next());}
double nd()throws Exception{return Double.parseDouble(in.next());}

StringTokenizer st;
}

}

String next() throws Exception{
while (st == null || !st.hasMoreElements()){
try{
}catch (IOException  e){
throw new Exception(e.toString());
}
}
return st.nextToken();
}

String nextLine() throws Exception{
String str = "";
try{
}catch (IOException e){
throw new Exception(e.toString());
}
return str;
}
}
}


Feel free to share your approach. Suggestions are welcomed as always. 1 Like

Hey can someone tell a test case on which my soln is wrong and also my soln gives tle when total calc are approx 10^8 only : )
soln:54837338

1 Like

Such a nice problem , here is my submission : Solution: 54629176 | CodeChef

Please anyone tell me what is wrong with the solution Mosty followed the Youtube Tutorial given for this question

My solution: Solution: 55590562 | CodeChef

finding sqrt() turns out to be of logarithmic time Hi all,
we can find the co-ordinates in constant time right.
lets say e = 20;
x(x+1)/2 ~= 20, solving this, we get floor(x) = 5, so 20 is in 6th row (as x is not integer here; for 6,10,15,21… x will be absolute integer)
and 5(5+1)/2 + y = 20 ==> y = 5.
thus we get co-ordinates (x, y) = (6,5).

just solving n^2 + n - 2*e = 0 …