Given a number N, check if it is reverse length divisible. A number is said to be reverse length divisible if the first i digits of the number is divisible by (l-i-1) where l is the number of digits in N and 0 < i <= l.

For example, 652281 is reverse length divisible because:

6 is divisible by 6

65 is divisible by 5

652 is divisible by 4

6522 is divisible by 3

65228 is divisible by 2

652281 is divisible by 1.

43268 is not reverse length divisible. Print Yes if the number is reverse length divisible and no otherwise.

**Boundary Conditions:**

0<n<10000000

**Input Format:**

The first line contains the number N

**Output Format:**

Print “Yes” if the number is reverse length divisible otherwise print “No” (without quotes).

**Example Input:**

652281

**Example Output:**

Yes

**SOLUTION**

```
#include<iostream
using namespace std;
int main()
{
int n,i,j,temp,num,multi;
int count=0,
length=0;
cout << "Enter number : ";
cin >> n;
temp = n;
while(temp != 0)
{
length++;
temp /= 10;
}
for(i=1;i<length+1;i++)
{
multi=1;
num=n;
for(j=length;j>i;j--)
{
multi=multi*10;
}
num=num/multi;
if(num % (length-i+1) == 0)
{
count++;
}
}
if(length==count)
{
cout<<"Yes";
}
else
{
cout<<"No";
}
}
```