PROBLEM LINK:
Practice
Contest: Division 1
Contest: Division 2
Contest: Division 3
Contest: Division 4
Author: raysh07
Tester: sushil2006
Editorialist: raysh07
DIFFICULTY:
Simple
PREREQUISITES:
Greedy/DP
PROBLEM:
You get one new watch every day. You can sell upto 2 watches every day for A_i coins. What is your maximum profit?
EXPLANATION:
There are 2 fundamental approaches to it, either through regret greedy or through dynamic programming.
Regret Greedy:
For each prefix of the array A, maintain the optimal choices in a multiset. Then, incrementally from i = 1 to N, sell 1 watch on day i and insert A_i into the multiset. Further, if A_i is better than the minimum value in the multiset, remove it and insert A_i again into the multiset (this is representing overwriting a previous choice with selling on day i instead).
This has a time complexity of O(N \cdot log (N)).
Dynamic Programming:
We can maintain a dp state of dp_{(i, j)} = maximum profit with selling j items upto day i. Note that a state is valid if and only if j \le i because we cannot sell items we do not have.
Then, we loop over the number of items sold on day i + 1 (can be 0, 1 or 2) and transition accordingly.
The final answer can be found in dp_{(N, N)}. There are O(N^2) states each with O(1) transitions, hence the time complexity is O(N^2)
TIME COMPLEXITY:
\mathcal{O}(N log(N)) per testcase.
CODE:
Editorialist's Code (C++)
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define INF (int)1e18
mt19937_64 RNG(chrono::steady_clock::now().time_since_epoch().count());
void Solve()
{
int n; cin >> n;
vector <int> a(n);
for (auto &x : a) cin >> x;
multiset <int> ms;
for (auto x : a){
ms.insert(x);
int y = *ms.begin();
if (y < x){
ms.erase(ms.find(y));
ms.insert(x);
}
}
int ans = 0;
for (auto x : ms){
ans += x;
}
cout << ans << "\n";
}
int32_t main()
{
auto begin = std::chrono::high_resolution_clock::now();
ios_base::sync_with_stdio(0);
cin.tie(0);
int t = 1;
// freopen("in", "r", stdin);
// freopen("out", "w", stdout);
cin >> t;
for(int i = 1; i <= t; i++)
{
//cout << "Case #" << i << ": ";
Solve();
}
auto end = std::chrono::high_resolution_clock::now();
auto elapsed = std::chrono::duration_cast<std::chrono::nanoseconds>(end - begin);
cerr << "Time measured: " << elapsed.count() * 1e-9 << " seconds.\n";
return 0;
}