SHOEFIT - Editorial

PROBLEM LINK:

Practice
Contest: Division 3
Contest: Division 2
Contest: Division 1

Author: Ashish Gupta
Tester: Aryan Choudhary
Editorialist: Vichitr Gandas

DIFFICULTY:

CAKEWALK

PREREQUISITES:

NONE

PROBLEM:

You have 3 shoes of similar size lying around. Each shoe is either a left shoe (represented using 0) or a right shoe (represented using 1). Given A,B,C representing the information for each shoe, find out whether you can go out now, wearing one left shoe and one right shoe.

EXPLANATION

Just check if there is at least one left shoe and at least one right shoe.
To find the count of right shoes, we can just take sum cnt_1=A+B+C. Then count of left shoes is cnt_0 = 3-cnt_1. So just check if cnt_0 > 0 and cnt_1 > 0.

TIME COMPLEXITY:

O(1) per test case

SOLUTIONS:

Setter's Solution
#include <bits/stdc++.h>
using namespace std;
 
#define IOS ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
#define endl "\n"
#define int long long
 
const int N = 1005;

int32_t main()
{
	IOS;
	int t;
	cin >> t;
	while(t--)
	{
		int a, b, c;
		cin >> a >> b >> c;
		int sum = a + b + c;
		if(sum >= 1 && sum <= 2)
			cout << 1 << endl;
		else
			cout << 0 << endl;
	}
	return 0;
}
Tester's Solution
/* in the name of Anton */

/*
  Compete against Yourself.
  Author - Aryan (@aryanc403)
  Atcoder library - https://atcoder.github.io/ac-library/production/document_en/
*/

#ifdef ARYANC403
    #include <header.h>
#else
    #pragma GCC optimize ("Ofast")
    #pragma GCC target ("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx")
    //#pragma GCC optimize ("-ffloat-store")
    #include<bits/stdc++.h>
    #define dbg(args...) 42;
#endif

using namespace std;
#define fo(i,n)   for(i=0;i<(n);++i)
#define repA(i,j,n)   for(i=(j);i<=(n);++i)
#define repD(i,j,n)   for(i=(j);i>=(n);--i)
#define all(x) begin(x), end(x)
#define sz(x) ((lli)(x).size())
#define pb push_back
#define mp make_pair
#define X first
#define Y second
#define endl "\n"

typedef long long int lli;
typedef long double mytype;
typedef pair<lli,lli> ii;
typedef vector<ii> vii;
typedef vector<lli> vi;

const auto start_time = std::chrono::high_resolution_clock::now();
void aryanc403()
{
#ifdef ARYANC403
auto end_time = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> diff = end_time-start_time;
    cerr<<"Time Taken : "<<diff.count()<<"\n";
#endif
}

long long readInt(long long l, long long r, char endd) {
    long long x=0;
    int cnt=0;
    int fi=-1;
    bool is_neg=false;
    while(true) {
        char g=getchar();
        if(g=='-') {
            assert(fi==-1);
            is_neg=true;
            continue;
        }
        if('0'<=g&&g<='9') {
            x*=10;
            x+=g-'0';
            if(cnt==0) {
                fi=g-'0';
            }
            cnt++;
            assert(fi!=0 || cnt==1);
            assert(fi!=0 || is_neg==false);

            assert(!(cnt>19 || ( cnt==19 && fi>1) ));
        } else if(g==endd) {
            if(is_neg) {
                x=-x;
            }
            assert(l<=x&&x<=r);
            return x;
        } else {
            assert(false);
        }
    }
}
string readString(int l, int r, char endd) {
    string ret="";
    int cnt=0;
    while(true) {
        char g=getchar();
        assert(g!=-1);
        if(g==endd) {
            break;
        }
        cnt++;
        ret+=g;
    }
    assert(l<=cnt&&cnt<=r);
    return ret;
}
long long readIntSp(long long l, long long r) {
    return readInt(l,r,' ');
}
long long readIntLn(long long l, long long r) {
    return readInt(l,r,'\n');
}
string readStringLn(int l, int r) {
    return readString(l,r,'\n');
}
string readStringSp(int l, int r) {
    return readString(l,r,' ');
}

void readEOF(){
    assert(getchar()==EOF);
}

vi readVectorInt(int n,lli l,lli r){
    vi a(n);
    for(int i=0;i<n-1;++i)
        a[i]=readIntSp(l,r);
    a[n-1]=readIntLn(l,r);
    return a;
}

const lli INF = 0xFFFFFFFFFFFFFFFL;

lli seed;
mt19937 rng(seed=chrono::steady_clock::now().time_since_epoch().count());
inline lli rnd(lli l=0,lli r=INF)
{return uniform_int_distribution<lli>(l,r)(rng);}

class CMP
{public:
bool operator()(ii a , ii b) //For min priority_queue .
{    return ! ( a.X < b.X || ( a.X==b.X && a.Y <= b.Y ));   }};

void add( map<lli,lli> &m, lli x,lli cnt=1)
{
    auto jt=m.find(x);
    if(jt==m.end())         m.insert({x,cnt});
    else                    jt->Y+=cnt;
}

void del( map<lli,lli> &m, lli x,lli cnt=1)
{
    auto jt=m.find(x);
    if(jt->Y<=cnt)            m.erase(jt);
    else                      jt->Y-=cnt;
}

bool cmp(const ii &a,const ii &b)
{
    return a.X<b.X||(a.X==b.X&&a.Y<b.Y);
}

const lli mod = 1000000007L;
// const lli maxN = 1000000007L;

int main(void) {
    ios_base::sync_with_stdio(false);cin.tie(NULL);
    // freopen("txt.in", "r", stdin);
    // freopen("txt.out", "w", stdout);
// cout<<std::fixed<<std::setprecision(35);
lli T=readIntLn(1,8);
while(T--)
{
    auto a=readVectorInt(3,0,1);
    sort(all(a));
    cout<<(a[0]+a[2]==1)<<endl;
}   aryanc403();
    readEOF();
    return 0;
}
Editorialist's Solution
/*
 * @author: vichitr
 * @date: 25th July 2021
 */

#include <bits/stdc++.h>
using namespace std;
#define int long long
#define fast ios::sync_with_stdio(0); cin.tie(0);

void solve() {
	int A, B, C; cin >> A >> B >> C;
	int cnt1 = A + B + C;
	int cnt0 =  3 - cnt1;
	if (cnt0 > 0 and cnt1 > 0)
		cout << "1\n";
	else
		cout << "0\n";
}

signed main() {
	fast;

#ifndef ONLINE_JUDGE
	freopen("in.txt", "r", stdin);
	freopen("out.txt", "w", stdout);
#endif

	int t = 1;
	cin >> t;
	for (int tt = 1; tt <= t; tt++) {
		// cout << "Case #" << tt << ": ";
		solve();
	}
	return 0;
}

If you have other approaches or solutions, let’s discuss in comments.If you have other approaches or solutions, let’s discuss in comments.

1 Like

We can simply check if any one if them is 0 (zero) , then we can never have a pair so we can never go out print (0) else if it is false then we print 1(one).

Since we need at least one 0 and at least one 1, we can check whether their AND and their OR return different values.