# PROBLEM LINK:

Contest Division 1

Contest Division 2

Contest Division 3

Setter: Jeevan Jyot Singh

Tester: Manan Grover

Editorialist: Lavish Gupta

# DIFFICULTY:

Easy

# PREREQUISITES:

# PROBLEM:

JJ is back with another challenge. He challenges you to construct an array A containing N integers such that the following conditions hold:

- For all 1 \le i \le N, 1 \le A_i \le 10^6
- Every subarray has non-zero XOR. That is, for every 1 \le L \le R \le N, A_L \oplus A_{L+1} \oplus \ldots \oplus A_R \ne 0. Here, \oplus denotes the bitwise XOR operation.

Can you complete JJ’s challenge?

Under the given constraints, it can be proved that there always exists at least one array satisfying these conditions. If there are multiple possible arrays, **print any of them**.

# QUICK EXPLANATION:

## What if there is a subarray having XOR = 0?

If there is a subarray having XOR = 0, there will exist a pair of distinct values i, j such that the XOR of prefixes of length i and j will be equal.

Hence, if XOR of all prefixes are distinct, then there will be no subarray having XOR = 0.

## Assigning XORs

So let us assign distinct positive XORs to each prefix length. One way can be to assign XOR_{[1, i]} = i.

This means that (i-1) \oplus A_i = i

# EXPLANATION:

\oplus_{[L, R]} denotes the XOR of the subarray starting at index L and ending at index R (inclusive).

Let’s say there exists a subarray [L, R] such that A_L \oplus A_{L+1} \oplus \ldots \oplus A_R = 0

Consider the XOR of the prefix [1 , L-1] and [1, R].

\oplus_{[1, R]} = (\oplus_{[1, L-1]}) \oplus (\oplus_{[L, R]}) \implies \oplus_{[1, R]} = \oplus_{[1, L-1]}

The above equation suggests that if there is a subarray having XOR = 0, there will exist a pair of distinct values i, j such that the XOR of prefixes of length i and j will be equal.

Hence, if XOR of all prefixes are distinct, then there will be no subarray having XOR = 0.

Now, there can be several ways in which we can assign the XOR values to each prefix length. One of the simplest way is to assign \oplus_{[1, i]} = i, i.e. for prefix of length i, let us assign it’s XOR value to be i.

## Getting the array

So we have \oplus_{[1, i]} = i, \forall i: 1 \leq i \leq N

XOR of prefix of length one = 1 = A_1

Now, for a general index i > 1, \oplus_{[1, i]} = \oplus_{[1, i-1]} \oplus A_i

Substituting values, i = (i-1) \oplus A_i \implies A_i = (i-1) \oplus i

It can be proved that the above value of A_i ensures that A_i < 2\cdot i. Therefore,\forall i: 1 \leq i \leq N, A_i \leq 10^6

## Bonus Problem

Suppose we modify the constraint of A_i, such that 1 \leq A_i \leq N. Can you construct an array now?

# TIME COMPLEXITY:

Assuming that taking XOR of two numbers is an O(1) operation, the above approach will take O(N) time for each testcase.

# SOLUTION:

## Setter's Solution

```
#ifdef WTSH
#include <wtsh.h>
#else
#include <bits/stdc++.h>
using namespace std;
#define dbg(...)
#endif
#define IOS ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0)
#define int long long
#define endl "\n"
#define sz(w) (int)(w.size())
using pii = pair<int, int>;
const int N = 1e5 + 5;
int ans[N];
void precompute()
{
ans[0] = 1;
int cur = 1;
for(int i = 1; i < N; i++)
{
ans[i] = (cur + 1) ^ cur;
cur++;
}
}
void solve(int n)
{
for(int i = 0; i < n; i++)
cout << ans[i] << " ";
cout << endl;
}
int32_t main()
{
IOS;
precompute();
int T; cin >> T;
for(int tc = 1; tc <= T; tc++)
{
int n; cin >> n;
solve(n);
}
return 0;
}
```

## Tester's Solution

```
#include <bits/stdc++.h>
using namespace std;
int main(){
ios_base::sync_with_stdio(false);cin.tie(NULL);cout.tie(NULL);
int t;
cin>>t;
while(t--){
int n;
cin>>n;
for(int i = 0; i < n; i++){
cout<<(i ^ (i + 1))<<" ";
}
cout<<"\n";
}
return 0;
}
```

## Editorialist's Solution

```
#include<bits/stdc++.h>
#define ll long long
using namespace std ;
const ll z = 1000000007 ;
void solve()
{
int n ;
cin >> n ;
int arr[n] ;
arr[0] = 1 ;
for(int i = 1 ; i < n; i++)
{
int req_xor = i+1 ;
int req_ele = (req_xor ^ i) ;
arr[i] = req_ele ;
}
for(int i = 0 ; i < n ; i++)
{
cout << arr[i] << ' ';
}
cout << endl ;
return ;
}
int main()
{
ios_base::sync_with_stdio(0);
cin.tie(0); cout.tie(0);
#ifndef ONLINE_JUDGE
freopen("inputf.txt" , "r" , stdin) ;
freopen("outputf.txt" , "w" , stdout) ;
freopen("error.txt" , "w" , stderr) ;
#endif
int t;
cin >> t ;
while(t--)
solve() ;
return 0;
}
```