# WA in 2nd testset NOT ALL FLAVOURS

So, I passed the first test set and am getting WA in second test set.
Earlier I used the brute force solution and passed the first testset and one testcase of second testset, So I know that I am missing some test case in my optimised solution

approach:
Start with the range (0, 0). Keep expanding the range while all the flavors are not included in the range l…u (and take max). Once this condition becomes false, contract the range from the other side. I do this until the left index if past the first element and then remove that element from the hashset.

code:

``````import java.io.Writer;
import java.io.BufferedWriter;
import java.io.OutputStreamWriter;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.IOException;
import java.io.InputStream;
import java.math.BigInteger;
import java.util.Arrays;
import java.util.ArrayList;
import java.util.InputMismatchException;
import java.util.*;
import java.io.*;
import java.math.*;

class Codechef{

static class ProblemSolver{
public void solveTheProblem(InputReader in,OutputWriter out, NumberTheory nt){
int test=in.nextInt();
while(test-- >0){
int n=in.nextInt();
int k=in.nextInt();
ArrayList<Integer> ar= new ArrayList<>();
ar=in.nextIntArrayList(n);
HashSet<Integer> hs= new HashSet<>();
int c=0, i, max_len=0, size=0;
int left, right;left=right=0;
while(right != n){
if(hs.size()==k){
int l= ar.get(left);
left++;
while(ar.get(left)==l){
left++;
}
hs.remove(l);
}
else{
if(hs.size()!=k)
max_len=Math.max(max_len, (right-left));
}
// System.out.println("HashSet:  "+hs);
// System.out.println("left: "+left+" right: "+right+" length: "+max_len);
}
System.out.println(max_len);
}
}
}

public static void main(String[] args){
InputStream inputStream=System.in;
OutputStream outputStream=System.out;
OutputWriter out=new OutputWriter(outputStream);
NumberTheory nt= new NumberTheory();
ProblemSolver problemSolver=new ProblemSolver();
problemSolver.solveTheProblem(in,out, nt);
out.flush();
out.close();
}

private boolean finished = false;

private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;

this.stream = stream;
}

if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}

public int peek() {
if (numChars == -1) {
return -1;
}
if (curChar >= numChars) {
curChar = 0;
try {
} catch (IOException e) {
return -1;
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar];
}

public int nextInt() {
while (isSpaceChar(c)) {
}
int sgn = 1;
if (c == '-') {
sgn = -1;
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
} while (!isSpaceChar(c));
return res * sgn;
}

public long nextLong() {
while (isSpaceChar(c)) {
}
int sgn = 1;
if (c == '-') {
sgn = -1;
}
long res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
} while (!isSpaceChar(c));
return res * sgn;
}

public String nextLine() {
while (isSpaceChar(c)) {
}
StringBuilder res = new StringBuilder();
do {
if (Character.isValidCodePoint(c)) {
res.appendCodePoint(c);
}
} while (!isSpaceChar(c));
return res.toString();
}

public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}

public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}

StringBuilder buf = new StringBuilder();
while (c != '\n' && c != -1) {
if (c != '\r') {
buf.appendCodePoint(c);
}
}
return buf.toString();
}

while (s.trim().length() == 0) {
}
return s;
}

if (ignoreEmptyLines) {
} else {
}
}

try {
return new BigInteger(nextLine());
} catch (NumberFormatException e) {
throw new InputMismatchException();
}
}

public char nextCharacter() {
while (isSpaceChar(c)) {
}
return (char) c;
}

public double nextDouble() {
while (isSpaceChar(c)) {
}
int sgn = 1;
if (c == '-') {
sgn = -1;
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E') {
return res * Math.pow(10, nextInt());
}
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
}
if (c == '.') {
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E') {
return res * Math.pow(10, nextInt());
}
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
m /= 10;
res += (c - '0') * m;
}
}
return res * sgn;
}

public boolean isExhausted() {
int value;
while (isSpaceChar(value = peek()) && value != -1) {
}
return value == -1;
}

public String next() {
return nextLine();
}

public SpaceCharFilter getFilter() {
return filter;
}

public void setFilter(SpaceCharFilter filter) {
this.filter = filter;
}

public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
public int[] nextIntArray(int n){
int[] array=new int[n];
for(int i=0;i<n;++i)array[i]=nextInt();
return array;
}
public int[] nextSortedIntArray(int n){
int array[]=nextIntArray(n);
Arrays.sort(array);
return array;
}
public ArrayList<Integer> nextIntArrayList(int n){
ArrayList<Integer> ar= new ArrayList<>();
for(int i=0;i<n;i++)
return ar;
}
public ArrayList<Long> nextLongArrayList(int n){
ArrayList<Long> ar= new ArrayList<>();
for(int i=0;i<n;i++)
return ar;
}

public int[] nextSumIntArray(int n){
int[] array=new int[n];
array[0]=nextInt();
for(int i=1;i<n;++i)array[i]=array[i-1]+nextInt();
return array;
}
public long[] nextLongArray(int n){
long[] array=new long[n];
for(int i=0;i<n;++i)array[i]=nextLong();
return array;
}
public long[] nextSumLongArray(int n){
long[] array=new long[n];
array[0]=nextInt();
for(int i=1;i<n;++i)array[i]=array[i-1]+nextInt();
return array;
}
public long[] nextSortedLongArray(int n){
long array[]=nextLongArray(n);
Arrays.sort(array);
return array;
}
public int[][] nextIntMatrix(int n,int m){
int[][] matrix=new int[n][m];
for(int i=0;i<n;++i)
for(int j=0;j<m;++j)
matrix[i][j]=nextInt();
return matrix;
}

public int[][] nextIntMatrix(int n){
return nextIntMatrix(n,n);
}

public long[][] nextLongMatrix(int n,int m){
long[][] matrix=new long[n][m];
for(int i=0;i<n;++i)
for(int j=0;j<m;++j)
matrix[i][j]=nextLong();
return matrix;
}

public long[][] nextLongMatrix(int n){
return nextLongMatrix(n,n);
}

public char[][] nextCharMatrix(int n,int m){
char[][] matrix=new char[n][m];
for(int i=0;i<n;++i)
matrix[i]=next().toCharArray();
return matrix;
}

public char[][] nextCharMatrix(int n){
return nextCharMatrix(n,n);
}
}

static class OutputWriter {
private final PrintWriter writer;

public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}

public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}

// public void print(char[] array) {
//     writer.print(array);
// }

public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}

public void print(int[] array) {
for (int i = 0; i < array.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(array[i]);
}
}

public void print(double[] array) {
for (int i = 0; i < array.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(array[i]);
}
}

public void print(long[] array) {
for (int i = 0; i < array.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(array[i]);
}
}

public void print(char[] array) {
for (int i = 0; i < array.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(array[i]);
}
}

public void print(String[] array) {
for (int i = 0; i < array.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(array[i]);
}
}

public void print(int[][] matrix){
for(int i=0;i<matrix.length;++i){
println(matrix[i]);
}
}

public void print(double[][] matrix){
for(int i=0;i<matrix.length;++i){
println(matrix[i]);
}
}

public void print(long[][] matrix){
for(int i=0;i<matrix.length;++i){
println(matrix[i]);
}
}

public void print(char[][] matrix){
for(int i=0;i<matrix.length;++i){
println(matrix[i]);
}
}

public void print(String[][] matrix){
for(int i=0;i<matrix.length;++i){
println(matrix[i]);
}
}

public void println(int[] array) {
print(array);
writer.println();
}

public void println(double[] array) {
print(array);
writer.println();
}

public void println(long[] array) {
print(array);
writer.println();
}

// public void println(char[] array) {
//     print(array);
//     writer.println();
// }

public void println(String[] array) {
print(array);
writer.println();
}

public void println() {
writer.println();
}

public void println(Object... objects) {
print(objects);
writer.println();
}

public void print(char i) {
writer.print(i);
}

public void println(char i) {
writer.println(i);
}

public void println(char[] array) {
writer.println(array);
}

public void printf(String format, Object... objects) {
writer.printf(format, objects);
}

public void close() {
writer.close();
}

public void flush() {
writer.flush();
}

public void print(long i) {
writer.print(i);
}

public void println(long i) {
writer.println(i);
}

public void print(int i) {
writer.print(i);
}

public void println(int i) {
writer.println(i);
}

public void separateLines(int[] array) {
for (int i : array) {
println(i);
}
}
}
static class NumberTheory{

/**
* Modular Arithmetic:
*  1. (a+b)%c=(a%c+b%c)%c
*  2. (a*b)%c=(a%c*b%c)%c
*  3. (a-b)%c=(a%c-b%c+c)%c
*  4. (a/b)%c=(a%c*(b^-1)%c)%c -- (b^-1 is multiplicative modulo inverse)
*/
public int modularAddition(int a,int b,int MOD){
return (a%MOD+b%MOD)%MOD;
}
public long modularAddition(long a,long b,long MOD){
return (a%MOD+b%MOD)%MOD;
}
//Modular Multiplication
public int modularMultiplication(int a,int b,int MOD){
return ((a%MOD)*(b%MOD))%MOD;
}
public long modularMultiplication(long a,long b,long MOD){
return ((a%MOD)*(b%MOD))%MOD;
}
//Modular Subtraction
public int modularSubtraction(int a,int b,int MOD){
return (a%MOD-b%MOD+MOD)%MOD;
}
public long modularSubtraction(long a,long b,long MOD){
return (a%MOD-b%MOD+MOD)%MOD;
}

/**
* Binary Exponentiation
*/
public int binaryExponentiation(int x,int n){
if(n==0)return 1;
else if(n%2==0)return binaryExponentiation(x*x,n/2);
else return x*binaryExponentiation(x*x,(n-1)/2);
}
public long binaryExponentiation(long x,long n){
long result=1;
while(n>0){
if(n%2==1)result*=x;
x=x*x;
n/=2;
}
return result;
}

/**
* Modular Exponentiation
*/
public int modularExponentiation(int x,int n,int MOD){
if(n==0)return 1%MOD;
else if(n%2==0)return modularExponentiation(modularMultiplication(x,x,MOD),n/2,MOD);
else return modularMultiplication(x,modularExponentiation(modularMultiplication(x,x,MOD),(n-1)/2,MOD),MOD);
}
public long modularExponentiation(long x,long n,long MOD){
long result=1;
while(n>0){
if(n%2==1)result=modularMultiplication(result,x,MOD);
x=modularMultiplication(x,x,MOD);
n/=2;
}
return result;
}

/**
* Factorial of a number
*/
public long factorials(long n){
if(n==0)return 1;
return n*factorials(n-1);
}

/**
* Prime factors of a number
*/
public ArrayList<Integer> distinctPrimeFactors(int n){
ArrayList<Integer> factorials=new ArrayList<>();
int limit=(int)Math.sqrt(n);
if(n%2==0){
while(n%2==0)n/=2;
}
for(int i=3;i<=limit;i+=2){
if(n%i==0){
while(n%i==0)n/=i;
}
}
return factorials;
}

public ArrayList<Long> distinctPrimeFactors(long n){
ArrayList<Long> factorials=new ArrayList<>();
long limit=(long)Math.sqrt(n);
if(n%2==0){
while(n%2==0)n/=2;
}
for(long i=3;i<=limit;i+=2){
if(n%i==0){
while(n%i==0)n/=i;
}
}
return factorials;
}

public ArrayList<Integer> primeFactors(int n){
ArrayList<Integer> factorials=new ArrayList<>();
int limit=(int)Math.sqrt(n);
if(n%2==0){
while(n%2==0)n/=2;
}
for(int i=3;i<=limit;i+=2){
if(n%i==0){
while(n%i==0)n/=i;
}
}
return factorials;
}

public ArrayList<Long> primeFactors(long n){
ArrayList<Long> factorials=new ArrayList<>();
long limit=(long)Math.sqrt(n);
if(n%2==0){
while(n%2==0)n/=2;
}
for(long i=3;i<=limit;i+=2){
if(n%i==0){
while(n%i==0)n/=i;
}
}
return factorials;
}

/**
* Combination: nCr
*/
//Naive version
//(n,r)=(n-1,r-1)+(n-1,r) for r!=0 or r!=n
//(n,0)=(n,n)=1
public int binomialCoefficientRecursive(int n,int k){
if(k==0 || k==n)return 1;//base case
return binomialCoefficientRecursive(n-1,k-1)+binomialCoefficientRecursive(n-1,k);//recursion
}

//Dynamic Programming version(Uses bottom up approach to fill the table)
//Time complexity: O(n*k)
//Space complexity: O(n*k)
public long binomialCoefficientIterative(int n,int k){
long[][] C=new long[n+1][k+1];
for(int i=0;i<=n;++i){
for(int j=0;j<=Math.min(n,k);++j){
if(j==0 || j==i)C[i][j]=1;
else C[i][j]=C[i-1][j-1]+C[i-1][j];
}
}
return C[n][k];
}

//Pascal's Triangle version(Space efficient program)
//Time complexity: O(n*k)
//Space complexity: O(k)
public long nCr(int n,int r){
int[] C=new int[r+1];
C[0]=1;//nC0=1
for(int i=1;i<=n;++i)
for(int j=Math.min(i,r);j>0;--j)
C[j]=C[j]+C[j-1];
return C[r];
}

/**
* Catlan number:
*  - Time complexity: O(n*n)
*  - Auxiliary space: O(n)
*
*  NOTE: Time complexity could be reduced to O(n) but it is
*        possible if and only if n is small or else there is
*        a chance of getting an overflow. To decrease the time
*        complexity to O(n) just remember nCr=nCn-r
*/
public long catlanNumber(int n){
long[] catlan=new long[n+1];
catlan[0]=catlan[1]=1;
for(int i=2;i<=n;++i)
for(int j=0;j<i;++j)
catlan[i]+=catlan[j]*catlan[i-1-j];

return catlan[n];
}

/**
* Greatest Common Divisor(GCD)
*  - It is also known as Highest Common Factor(HCF)
*  - Time complexity: log(min(a,b))
*  - Auxiliary Space: O(1)
*/
public int gcd(int a,int b){
if(b==0)return a;
return gcd(b,a %b);
}

public long gcd(long a,long b){
if(b==0)return a;
return gcd(b,a%b);
}

/**
* Extended Euclid's Algorithm:
*  - ax+by=gcd(a,b)
*  - Time complexity:
*  -
*/

/**
* Least Common Multiple(LCM):
*  - Time complexity: log(min(a,b))
*  - Auxiliary Space: O(1)
*/
public long lcm(long a,long b){
return (a*b)/gcd(a,b);
}

}
}

``````