XXOORR - Editorial

Setter: Bharat Singla
Tester: Aryan
Editorialist: Taranpreet Singh

Simple

PREREQUISITES

Bitwise Operations

PROBLEM

Given an array, A containing N elements and an integer K, find the minimum number of operations required to convert all integers into 0.

An operation is performed as follows

• Choose a non-negative integer p (p \geq 0)
• Select at most K indices in array A
• For each selected index i, replace A_i with A_i \oplus 2^p, where \oplus denote bitwise XOR operation.

QUICK EXPLANATION

• In each operation, only the p-th bit of values in array changes, so the number of operations is the sum of the minimum number of operations needed to turn pth bit of all numbers 0 for each p
• For one p, we can count the number of elements in A having p-th bit on, say c, then we need \displaystyle \Big\lceil \frac{c}{K} \Big\rceil operations for p-th bit.

EXPLANATION

Observation 1

Let us notice that in one operation, all indices in the subset are XORed with 2^p, which has the effect of flipping only p-th bit in the binary representation of values of selected indices.

By the above logic, we can see that operations affecting different bits are independent of each other. Hence, we can consider each bit one by one, and find the minimum number of operations needed to make p-th bit of all numbers 0.

Observation 2

Claim: We never include any index i in any operation for some p, if A_i has p-th bit off.
Proof: Since we aim to make all elements zero, flipping a bit of some number from off to on is actually a step in the opposite direction since some later operation shall have to turn that bit off. The combined effect of these two operations shall be no effect, just wasting two slots in operations. So, it is better not to apply operation at index i for some p, if A_i doesnâ€™t have p-th bit on.

Implication of Observation 2

Letâ€™s say we have c elements having p-th bit on. In one operation, we can turn K of them off. So, by basic math, we can see that we need at least \displaystyle \Big\lceil \frac{c}{K} \Big\rceil operations.

Implementation

For each bit, count the number of elements in A having that bit on. Say C_i denotes the number of elements having I-th bit on. So \displaystyle \sum_i \Big\lceil \frac{C_i}{K} \Big\rceil is the required answer

C = [0,0,0,...]
for x in A:
for b in range(0, 30):
if x & (1<<b) > 0:
C[b]++
ans = 0
for c in C:
ans += ceil(c/K)


TIME COMPLEXITY

The time complexity is O(N*log(max(A_i))) per test case, since we only need to consider log(max(A_i)) bits.

SOLUTIONS

Setter's Solution
import sys
# sys.stdin = open("Input.txt", "r")
# sys.stdout = open("Output.txt", "w")
import math as mt
# from collections import Counter, deque
# from itertools import permutations
# from functools import reduce
# from heapq import heapify, heappop, heappush, heapreplace

def getInput(): return sys.stdin.readline().strip()
def getInt(): return int(getInput())
def getInts(): return map(int, getInput().split())
def getArray(): return list(getInts())

# sys.setrecursionlimit(10**7)
# INF = float('inf')
# MOD1, MOD2 = 10**9+7, 998244353

tc = 1
tc = getInt()

for _ in range(tc):

n, k = map(int, input().split())
a = list(map(int, input().split()))

bit_cnt = [0]*32
for i in a:
bit_pos = 0
while (i > 0):
if (i & 1):
bit_cnt[bit_pos] += 1
i >>= 1
bit_pos += 1

ans = 0
for i in bit_cnt:
ans += mt.ceil(i / k)

print(ans)

Tester's Solution
/* in the name of Anton */

/*
Compete against Yourself.
Author - Aryan (@aryanc403)
Atcoder library - https://atcoder.github.io/ac-library/production/document_en/
*/

#ifdef ARYANC403
#else
#pragma GCC optimize ("Ofast")
#pragma GCC target ("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx")
//#pragma GCC optimize ("-ffloat-store")
#include<bits/stdc++.h>
#define dbg(args...) 42;
#endif

using namespace std;
#define fo(i,n)   for(i=0;i<(n);++i)
#define repA(i,j,n)   for(i=(j);i<=(n);++i)
#define repD(i,j,n)   for(i=(j);i>=(n);--i)
#define all(x) begin(x), end(x)
#define sz(x) ((lli)(x).size())
#define pb push_back
#define mp make_pair
#define X first
#define Y second
#define endl "\n"

typedef long long int lli;
typedef long double mytype;
typedef pair<lli,lli> ii;
typedef vector<ii> vii;
typedef vector<lli> vi;

const auto start_time = std::chrono::high_resolution_clock::now();
void aryanc403()
{
#ifdef ARYANC403
auto end_time = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> diff = end_time-start_time;
cerr<<"Time Taken : "<<diff.count()<<"\n";
#endif
}

long long readInt(long long l, long long r, char endd) {
long long x=0;
int cnt=0;
int fi=-1;
bool is_neg=false;
while(true) {
char g=getchar();
if(g=='-') {
assert(fi==-1);
is_neg=true;
continue;
}
if('0'<=g&&g<='9') {
x*=10;
x+=g-'0';
if(cnt==0) {
fi=g-'0';
}
cnt++;
assert(fi!=0 || cnt==1);
assert(fi!=0 || is_neg==false);

assert(!(cnt>19 || ( cnt==19 && fi>1) ));
} else if(g==endd) {
if(is_neg) {
x=-x;
}
assert(l<=x&&x<=r);
return x;
} else {
assert(false);
}
}
}
string readString(int l, int r, char endd) {
string ret="";
int cnt=0;
while(true) {
char g=getchar();
assert(g!=-1);
if(g==endd) {
break;
}
cnt++;
ret+=g;
}
assert(l<=cnt&&cnt<=r);
return ret;
}
long long readIntSp(long long l, long long r) {
}
long long readIntLn(long long l, long long r) {
}
string readStringLn(int l, int r) {
}
string readStringSp(int l, int r) {
}

assert(getchar()==EOF);
}

vi readVectorInt(int n,lli l,lli r){
vi a(n);
for(int i=0;i<n-1;++i)
return a;
}

const lli INF = 0xFFFFFFFFFFFFFFFL;

lli seed;
inline lli rnd(lli l=0,lli r=INF)
{return uniform_int_distribution<lli>(l,r)(rng);}

class CMP
{public:
bool operator()(ii a , ii b) //For min priority_queue .
{    return ! ( a.X < b.X || ( a.X==b.X && a.Y <= b.Y ));   }};

void add( map<lli,lli> &m, lli x,lli cnt=1)
{
auto jt=m.find(x);
if(jt==m.end())         m.insert({x,cnt});
else                    jt->Y+=cnt;
}

void del( map<lli,lli> &m, lli x,lli cnt=1)
{
auto jt=m.find(x);
if(jt->Y<=cnt)            m.erase(jt);
else                      jt->Y-=cnt;
}

bool cmp(const ii &a,const ii &b)
{
return a.X<b.X||(a.X==b.X&&a.Y<b.Y);
}

const lli mod = 1000000007L;
// const lli maxN = 1000000007L;

lli T,n,i,j,k,in,cnt,l,r,u,v,x,y;
lli m;
string s;
vi a;
//priority_queue < ii , vector < ii > , CMP > pq;// min priority_queue .

int main(void) {
ios_base::sync_with_stdio(false);cin.tie(NULL);
// freopen("txt.in", "r", stdin);
// freopen("txt.out", "w", stdout);
// cout<<std::fixed<<std::setprecision(35);
lli sumN = 0;
while(T--)
{
sumN+=n;
lli fl=1,ans=0;
while(fl){
fl=0;
lli cnt=0;
for(auto &x:a){
cnt+=x&1;
x/=2;
fl|=x;
}
ans+=(cnt+k-1)/k;
}
cout<<ans<<endl;
}
assert(sumN<=2e5);
aryanc403();
return 0;
}

Editorialist's Solution
import java.util.*;
import java.io.*;
class XXOORR{
//SOLUTION BEGIN
void pre() throws Exception{}
void solve(int TC) throws Exception{
int N = ni(), K = ni();
int B = 30;
int[] cnt = new int[B];
for(int i = 0; i< N; i++){
int x = ni();
for(int b = 0; b< B; b++)if((x & (1<<b)) > 0)cnt[b]++;
}
int op = 0;
for(int i = 0; i< B; i++)op += (cnt[i]+K-1)/K;
pn(op);
}
//SOLUTION END
void hold(boolean b)throws Exception{if(!b)throw new Exception("Hold right there, Sparky!");}
static boolean multipleTC = true;
void run() throws Exception{
in = new FastReader();
out = new PrintWriter(System.out);
//Solution Credits: Taranpreet Singh
int T = (multipleTC)?ni():1;
pre();for(int t = 1; t<= T; t++)solve(t);
out.flush();
out.close();
}
public static void main(String[] args) throws Exception{
new XXOORR().run();
}
int bit(long n){return (n==0)?0:(1+bit(n&(n-1)));}
void p(Object o){out.print(o);}
void pn(Object o){out.println(o);}
void pni(Object o){out.println(o);out.flush();}
String n()throws Exception{return in.next();}
String nln()throws Exception{return in.nextLine();}
int ni()throws Exception{return Integer.parseInt(in.next());}
long nl()throws Exception{return Long.parseLong(in.next());}
double nd()throws Exception{return Double.parseDouble(in.next());}

StringTokenizer st;
}

public FastReader(String s) throws Exception{
}

String next() throws Exception{
while (st == null || !st.hasMoreElements()){
try{
st = new StringTokenizer(br.readLine());
}catch (IOException  e){
throw new Exception(e.toString());
}
}
return st.nextToken();
}

String nextLine() throws Exception{
String str = "";
try{
}catch (IOException e){
throw new Exception(e.toString());
}
return str;
}
}
}


Feel free to share your approach. Suggestions are welcomed as always.

3 Likes

Hi, I am not able to find a test case where my solution gets the wrong answer. Can please help in finding a case where my solution will not work.

#include <bits/stdc++.h>

using namespace std;

#define int long long

int32_t main() {

int t;

cin >> t;

while(t--) {

int n, k;

cin >> n >> k;

int a[n];

for(auto &i: a)  cin >> i;

sort(a, a + n);

int highest = a[n- 1];

if(highest == 0) { //if highest is 0

cout << 0 << '\n';

return 0;

}

int powOf2 = 0;

powOf2 =  64 - __builtin_clzll(highest) - 1;

int oper = 0;

while(powOf2 >= 0) {

int icount = 0;

for(int i = 0; i < n; i++) {

int mask = (1 << powOf2);

if((a[i] & mask) != 0) {

icount++;

}

}

if(icount > 0) {

if(k < n && icount > k && (icount %  k == 0)) {

oper += icount / k;

} else if(k < n && icount > k) {

oper += (icount / k) + 1;

} else {

oper += 1;

}

}

powOf2--;

}

cout << oper << '\n';

}

}

It fails on this test input, at least:

2
3 2
0 0 0
3 2
0 0 0

1 Like

dead, I returned on encountering an all 0 array. Not considering, there are other test cases. Such a noob

1 Like

Java solution-
Problem weâ€™ve with java is if we use Integer.highestOneBit() method for finding the bit which is on for given number and then weâ€™ve to turn that bit off and repeat till given number becomes zero.

HOWEVER NOTE- Integer.highestOneBit(6) returns 4 which is 2^2 so weâ€™ve to use log base 2 for finding what bit it isâ€¦i.e 6=110 so 1st and 2nd bits are on.

For a given number i this is one way to solve is this-

while(i>0)
{ int pow=Integer.highestOneBit(i);

// the powerArray[c] maintains count of c bit occurance in total
powerArray[(int)(Math.log(pow) / Math.log(2))]++;

//next we turn of highest one bit offâ€¦simply by XORing with value we got-
i=i^pow;
}

â€¦rest all is trivial as per editorialâ€¦traverse powerarray find ceil of c/K for each index and done
Solution link-Solution: 48653437 | CodeChef

Whatâ€™s the problem with the following code in python 3.6 :

from math import ceil

a = 0
for t in range(int(input())):

n , k = map(int,input().split())
lst = [int(bin(int(i))[2:]) for i in input().split()]
for i in lst:
op = 0
for i in add:
op += ceil(float(int(i))/float(k))

if a == 1:
print()
print(op, end = '')
a = 1

Hi, i think my solution to the problem is correct but it somehow isnt passing all the test cases. Is my code failing a test case? if yes, which?

#include <bits/stdc++.h>

using namespace std;

int poweroftwo(int n){

return !(n & (n-1));

}

int requiredP(int arr[], int n){

int maxnum = INT_MIN;

for(int i = 0; i < n; i++)

maxnum = max(maxnum, arr[i]);

int p = 0;

while(pow(2,p) < maxnum){

p++;

}

return p;

}

int main() {

int t;

cin >> t;

while(t--){

int i,n,k;

int p = 0;

int operations = 0;

int curr = 0;

cin >> n >> k;

int arr[n];

for(i = 0; i < n; i++)

cin >> arr[i];

for(i = 0; i < n; i++){

if( arr[i]%2 == 1){

arr[i] = arr[i] ^ 1;

curr += 1;

}

if ( curr == k -1){

curr = 0;

operations += 1;

}

}

if(curr != 0){

curr = 0;

operations += 1;

}

p = 1;

while( p < requiredP(arr, n)){

for(i = 0; i < n; i++){

if(arr[i] == 0){

continue;

}

if( poweroftwo(arr[i] ^ (int)(pow(2,p)))){

arr[i] = arr[i] ^ (int)pow(2,p);

curr += 1;

}

if ( curr == k -1){

curr = 0;

operations += 1;

}

}

if(curr != 0){

curr = 0;

operations += 1;

}

p++;

}

cout << operations << endl;

}

return 0;

}